跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭潔君
研究生(外文):JOYCE KUO
論文名稱:探討PLZF於幼鼠精原細胞中參與反轉錄跳躍子調控之多重角色
論文名稱(外文):Investigation of the diverse roles of PLZF in retrotransposon modulation in mouse postnatal spermatogonia
指導教授:錢宗良錢宗良引用關係林劭品
指導教授(外文):Chien, Chung-LiangLin, Shau-Ping
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:解剖學暨細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:69
中文關鍵詞:精原幹細胞PLZFMILI反轉錄跳躍子piRNA路徑
外文關鍵詞:spermatogonia stem cellsPLZFMILIretrotransposonspiRNA pathway
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
反轉錄跳躍子 (retrotransposons)嵌入基因體的現象在演化上扮演著重要的角色,其大約佔據了哺乳動物一半的DNA組成。以生殖細胞為例。若沒有縝密的調控機制抑制這群「跳躍基因」,反轉錄跳躍子可能會影響並破壞正常基因的表現。 異常喪失反轉錄跳躍子的抑制功能已被證實和生殖細胞的發育缺陷有關。Promyelocytic leukemia zinc finger (PLZF) 於睪丸中絕大部分表現在精原幹細胞及前軀細胞,其調控細胞自我更新及分化以維持正常的生精作用以避免精原幹細胞 (spermatogonial stem cells) 耗損。 本研究使用Plzflu/lu突變鼠和同胞野生型小鼠探討PLZF對於調節睪丸反轉錄跳躍子的角色。藉由生物資訊學和RT-qPCR分析發現PLFZ會和重複序列 (repeat element) 結合,且PLZF缺失會造成反轉錄跳躍子、LINE1 和IAP表現異常,進而證明PLZF在睪丸調控反轉錄跳躍子扮演不可或缺的角色。本研究室曾以四周齡THY1抗體純化的精原幹細胞作為材料,發現PLZF和MILI 和MAEL有交互作用。然而我在出生後八日的睪丸細胞中,發現PLZF僅和MILI有作用。由於已知MILI會藉由piRNA路徑,在生殖細胞發育中參與抑制反轉錄跳躍子以維持生殖細胞基因體的完整性,本研究假設PLZF亦藉由piRNA路徑調控反轉錄跳躍子。然而,分析出生後八日的睪丸細胞小RNA序列,並未觀察到PLZF突變鼠之piRNA生成明顯異於野生型小鼠。
總而言之,PLZF在睪丸中或可藉由影響反轉錄跳躍子轉錄,mRNA的穩定度、和piRNA路徑重要的相關基因結合以於多個層次影響反轉錄跳躍子抑制。但在piRNA生成作用無明顯差異的情況下,可能暗示著PLZF調節MILI的作用無關於piRNA pathway,而是可能在生殖細胞中調節轉譯並補償其他路徑以抑制反轉錄跳躍子。
The integration of retrotransposons into genomes plays an important role in evolution and make up about half of mammalian genome. Without tight and finely tuned regulation to repress these “jumping genes”, retrotransposons may wreak havoc and disrupt normal gene expression, especially in germ cells. Aberrant derepression of retrotransposons is associated with germ cell developmental defects. Promyelocytic leukemia zinc finger (PLZF), expressed mainly in germ cells in testes, is known to have a crucial role in spermatogenesis through self-renewal and differentiation regulation to prevent the depletion of spermatogonial stem cells (SCCs). In this study, we used Plzflu/lu mutant and wild type mouse to explore the roles of PLZF in modulating retrotransposons in testes.
First, through bioinformatics and RT-qPCR analysis, I saw that PLZF binds to the DNA sequences of repeat elements in cultured SSCs and in 8 dpp testes of Plzflu/lu, retrotransposons, LINE1 and IAP, displayed a deregulation in expression when compared to that of wild type littermates, concluding that PLZF is necessary to regulate retrotransposon in testes. Moreover, based on the preliminary data from our lab, PLZF interacts with MILI and MAEL in 4 weeks SSC enriched THY1+ cells. However, in 8dpp whole testes, I was only able to confirm the interaction between PLZF and MILI. Since MILI plays an important role in piRNA pathways, which include the repression of retrotransposons after epigenetic reprogramming during germ cell development to maintain the integrity of germ cell genome, I hypothesize that PLZF partially modulates retrotransposons through piRNA pathways. However, my small RNA sequencing results from 8 dpp testes of Plzflu/lu and their counterpart wild type littermates did not reveal major differences on the piRNA production, characteristics and specific retrotransposon subfamily associated piRNA candidates.
All in all, we and others demonstrated that PLZF has many levels of modulation in testes, essential for germline maintenance and spermatogenesis, and may modulate transposable elements through transcriptional gene silencing and/or through post-transcriptional gene silencing by affecting retrotransposon mRNA stability. The lack of significant difference in piRNA biogenesis may imply that MILI-PLZF interaction modulates MILI’s function independent of piRNA pathway, beyond transposable element modulation which may further suggest PLZF’s function in translational control in germ cells to repress retrotransposons and potentially other transcripts.
致謝Acknowledgment i
中文摘要 iii
Abstract v
List of Tables x
List of Figures xi
Chapter 1. Introduction 1
1.1 Spermatogonial Stem Cell and Spermatogenesis 1
1.2 Promyelocytic Leukemia Zinc Finger 1
1.3 Role of PLZF in SSC 2
1.4 Retrotransposons 3
1.5 PiRNA and PIWI Protein 4
1.6 Role of MILI in SSC and Retrotransposon Repression 5
1.7 PLZF interacts with MILI and MAEL in 4 week THY1+ spermatogonial stem cells 6
1.8 Significance 7
Chapter 2. Specific Aims 8
Chapter 3. Materials and Methods 10
3.1. Animals 10
3.2. PLZF luxoid Mutant 10
3.3. PLZF Genotyping 11
3.4. Cryosectioning 12
3.5. Immunohistochemistry and Immunocytochemistry 13
3.6. Total RNA Extraction 14
3.7. Reverse Transcription PCR 16
3.8. RTqPCR 17
3.9. Strand Specific RTqPCR 17
3.10. Protein Isolation 18
3.11. Protein Quantification 18
3.12. Western Blot 19
3.11.1 SDS-Page Gel 19
3.11.2 Buffer Preparation 20
3.11.3 Protein Preparation & Loading 21
3.11.4 Electrophoresis 21
3.11.5 Transfer 22
3.11.6 Antibody 22
3.11.7 Chemiluminescent Blotting & Data Analysis 23
3.13. Co-Immunoprecipitation 24
3.12.1 Protein Isolation 24
3.12.2 Co-Immunoprecipitation 24
3.12.3 Western Blot 25
3.14. Small RNA Sequencing 26
3.15. Bioinformatics 27
3.16. Statistical Analysis 28
Chapter 4. Results 29
4.1 Derepression of retrotransposon in Plzflu/lu 29
4.2 PLZF binds to genes of some piRNA pathway components 30
4.3 Deregulation of some piRNA regulators in Plzflu/lu 31
4.4 PLZF interacts with MILI 32
4.5 Bioinformatics analysis of 8 dpp testes derived small RNA sequencing demonstrates similar patterns of retrotransposon derived piRNAs between Plzflu/lu mutant and wild type littermates 33
Chapter 5. Discussion 36
5.1. PLZF repressive function observed on retrotransposons 36
5.2. The potential function of PLZF in retrotransposon modulation associated factors 37
5.3. MILI piRNA pathway independent functions 37
5.4. PLZF – MILI interaction and MILI subcellular localization 38
5.5. Prospective Work 39
5.6. Summary 39
Tables 41
Figures 46
References 64
Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M.J., Kuramochi-Miyagawa, S., Nakano, T., et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203-207.
Aravin, A.A., Sachidanandam, R., Bourc''his, D., Schaefer, C., Pezic, D., Toth, K.F., Bestor, T., and Hannon, G.J. (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31, 785-799.
Aravin, A.A., Sachidanandam, R., Girard, A., Fejes-Toth, K., and Hannon, G.J. (2007). Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744-747.
Aravin, A.A., van der Heijden, G.W., Castaneda, J., Vagin, V.V., Hannon, G.J., and Bortvin, A. (2009). Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet 5, e1000764.
Bannert, N., and Kurth, R. (2004). Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A 101 Suppl 2, 14572-14579.
Barna, M., Hawe, N., Niswander, L., and Pandolfi, P.P. (2000). Plzf regulates limb and axial skeletal patterning. Nat Genet 25, 166-172.
Barna, M., Merghoub, T., Costoya, J.A., Ruggero, D., Branford, M., Bergia, A., Samori, B., and Pandolfi, P.P. (2002). Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev Cell 3, 499-510.
Buaas, F.W., Kirsh, A.L., Sharma, M., McLean, D.J., Morris, J.L., Griswold, M.D., de Rooij, D.G., and Braun, R.E. (2004). Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36, 647-652.
Burdach, J., O''Connell, M.R., Mackay, J.P., and Crossley, M. (2012). Two-timing zinc finger transcription factors liaising with RNA. Trends Biochem Sci 37, 199-205.
Carmell, M.A., Girard, A., van de Kant, H.J., Bourc''his, D., Bestor, T.H., de Rooij, D.G., and Hannon, G.J. (2007). MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12, 503-514.
Chang, K., (2017). Using Systems Biology Approaches to Study Epigenetic Regulation on Chicken Embryonic Cell Fate Decision. In The College of life Sciences (National Taiwan University), pp. 1-141.
Chen, Z., Brand, N.J., Chen, A., Chen, S.J., Tong, J.H., Wang, Z.Y., Waxman, S., and Zelent, A. (1993). Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J 12, 1161-1167.
Ching, Y.H., Wilson, L.A., and Schimenti, J.C. (2010). An allele separating skeletal patterning and spermatogonial renewal functions of PLZF. BMC Dev Biol 10, 33.
Chirn, G.W., Rahman, R., Sytnikova, Y.A., Matts, J.A., Zeng, M., Gerlach, D., Yu, M., Berger, B., Naramura, M., Kile, B.T., et al. (2015). Conserved piRNA Expression from a Distinct Set of piRNA Cluster Loci in Eutherian Mammals. PLoS Genet 11, e1005652.
Costoya, J.A., Hobbs, R.M., Barna, M., Cattoretti, G., Manova, K., Sukhwani, M., Orwig, K.E., Wolgemuth, D.J., and Pandolfi, P.P. (2004). Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 36, 653-659.
Cox, D.N., Chao, A., Baker, J., Chang, L., Qiao, D., and Lin, H. (1998). A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12, 3715-3727.
Deng, W., and Lin, H. (2002). miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2, 819-830.
Fedoroff, N.V. (2012). Presidential address. Transposable elements, epigenetics, and genome evolution. Science 338, 758-767.
Friedli, M., and Trono, D. (2015). The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol 31, 429-451.
Girard, A., Sachidanandam, R., Hannon, G.J., and Carmell, M.A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199-202.
Green, M.C. (1955). Luxoid, a new hereditary leg and foot abnormality in the house mouse. . J Hered 46, 91-99.
Grimson, A., Srivastava, M., Fahey, B., Woodcroft, B.J., Chiang, H.R., King, N., Degnan, B.M., Rokhsar, D.S., and Bartel, D.P. (2008). Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455, 1193-1197.
Griswold, M.D. (2016). Spermatogenesis: The Commitment to Meiosis. Physiol Rev 96, 1-17.
Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J., and Surani, M.A. (2002). Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117, 15-23.
Ishizuka, M., Ohtsuka, E., Inoue, A., Odaka, M., Ohshima, H., Tamura, N., Yoshida, K., Sako, N., Baba, T., Kashiwabara, S., et al. (2016). Abnormal spermatogenesis and male infertility in testicular zinc finger protein Zfp318-knockout mice. Dev Growth Differ 58, 600-608.
Iwasaki, Y.W., Siomi, M.C., and Siomi, H. (2015). PIWI-Interacting RNA: Its Biogenesis and Functions. Annu Rev Biochem 84, 405-433.
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14, R36.
Kuramochi-Miyagawa, S., Kimura, T., Ijiri, T.W., Isobe, T., Asada, N., Fujita, Y., Ikawa, M., Iwai, N., Okabe, M., Deng, W., et al. (2004). Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839-849.
Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Totoki, Y., Toyoda, A., Ikawa, M., Asada, N., Kojima, K., Yamaguchi, Y., Ijiri, T.W., et al. (2008). DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22, 908-917.
Lee, J.H., Jung, C., Javadian-Elyaderani, P., Schweyer, S., Schutte, D., Shoukier, M., Karimi-Busheri, F., Weinfeld, M., Rasouli-Nia, A., Hengstler, J.G., et al. (2010). Pathways of proliferation and antiapoptosis driven in breast cancer stem cells by stem cell protein piwil2. Cancer Res 70, 4569-4579.
Liao, H.F., Chen, W.S., Chen, Y.H., Kao, T.H., Tseng, Y.T., Lee, C.Y., Chiu, Y.C., Lee, P.L., Lin, Q.J., Ching, Y.H., et al. (2014). DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development 141, 2402-2413.
Lin, H., and Spradling, A.C. (1997). A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463-2476.
Liu, T.M., Lee, E.H., Lim, B., and Shyh-Chang, N. (2016). Concise Review: Balancing Stem Cell Self-Renewal and Differentiation with PLZF. Stem Cells 34, 277-287.
Lovelace, D.L., Gao, Z., Mutoji, K., Song, Y.C., Ruan, J., and Hermann, B.P. (2016). The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development 143, 1893-1906.
Macia, A., Munoz-Lopez, M., Cortes, J.L., Hastings, R.K., Morell, S., Lucena-Aguilar, G., Marchal, J.A., Badge, R.M., and Garcia-Perez, J.L. (2011). Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol 31, 300-316.
Malik, H.S., Burke, W.D., and Eickbush, T.H. (1999). The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16, 793-805.
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 17.
Mecklenburg, J.M., and Hermann, B.P. (2016). Mechanisms Regulating Spermatogonial Differentiation. Results Probl Cell Differ 58, 253-287.
Mei, X.X., Wang, J., and Wu, J. (2015). Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation. Asian J Androl 17, 347-354.
Nawrocki, E.P., Burge, S.W., Bateman, A., Daub, J., Eberhardt, R.Y., Eddy, S.R., Floden, E.W., Gardner, P.P., Jones, T.A., Tate, J., et al. (2015). Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43, D130-137.
Puszyk, W., Down, T., Grimwade, D., Chomienne, C., Oakey, R.J., Solomon, E., and Guidez, F. (2013). The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J 32, 1941-1952.
Reding, S.C., Stepnoski, A.L., Cloninger, E.W., and Oatley, J.M. (2010). THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 139, 893-903.
Saitou, M., Kagiwada, S., and Kurimoto, K. (2012). Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 139, 15-31.
Seitz, H., Ghildiyal, M., and Zamore, P.D. (2008). Argonaute loading improves the 5'' precision of both MicroRNAs and their miRNA* strands in flies. Curr Biol 18, 147-151.
Soper, S.F., van der Heijden, G.W., Hardiman, T.C., Goodheart, M., Martin, S.L., de Boer, P., and Bortvin, A. (2008). Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell 15, 285-297.
Suliman, B.A., Xu, D., and Williams, B.R. (2012). The promyelocytic leukemia zinc finger protein: two decades of molecular oncology. Front Oncol 2, 74.
Surani, M.A. (2001). Reprogramming of genome function through epigenetic inheritance. Nature 414, 122-128.
Suzuki, R., Honda, S., and Kirino, Y. (2012). PIWI Expression and Function in Cancer. Front Genet 3, 204.
Wang, X., Jiang, C., Fu, B., Zhu, R., Diao, F., Xu, N., Chen, Z., Tao, W., and Li, C.J. (2015). MILI, a PIWI family protein, inhibits melanoma cell migration through methylation of LINE1. Biochem Biophys Res Commun 457, 514-519.
Yang, F., and Wang, P.J. (2016). Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Semin Cell Dev Biol 59, 118-125.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top