|
[1] R. Arora, A. Cotter, and N. Srebro. Stochastic optimization of PCA with capped MSG. In NIPS, pages 1815–1823, 2013. [2] K. Balasubramanian and G. Lebanon. The landmark selection method for multiple output prediction. In ICML, 2012. [3] P. Bartlett. Online convex optimization: ridge regression, adaptivity, 2008. [4] J. P. Bello, E. Chew, and D. Turnbull. Multilabel classification of music into emotions. In ICMIR, pages 325–330, 2008. [5] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for extreme multi-label classification. In NIPS, pages 730–738, 2015. [6] W. Bi and J. T. Kwok. Efficient multi-label classification with many labels. In ICML, pages 405–413, 2013. [7] Y. Chen and H. Lin. Feature-aware label space dimension reduction for multi-label classification. In NIPS, pages 1538–1546, 2012. [8] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. NUS-WIDE: a real-world web image database from national university of singapore. In CIVR, 2009. [9] K.Crammer,O.Dekel,J.Keshet,S.S.-S.,andY.Singer. Online passive-aggressive algorithms. Journal of Machine Learning Research, 7:551–585, 2006. [10] K. Dembczynski, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In ICML, pages 279–286, 2010. [11]K.Dembczynski,W.Waegeman,W.Cheng,andE.Hüllermeier.Anexactalgorithm for F-measure maximization. In NIPS, pages 1404–1412, 2011. [12] A. Elisseeff and J. Weston. A kernel method for multilabelled classification. In NIPS, 2001. [13] D.Hsu,S.Kakade,J.Langford,andT.Zhang.Multi label Prediction Via Compressed sensing. In NIPS, pages 772–780, 2009. [14] A. Kapoor, R. Viswanathan, and P. Jain. Multilabel classification using bayesian compressed sensing. In NIPS, pages 2654–2662, 2012. [15] C. Li and H. Lin. Condensed filter tree for cost-sensitive multi-label classification. In ICML, pages 423–431, 2014. [16] C.Li,H.Lin,andC.Lu.Rivalry of two families of algorithms for memory restricted streaming PCA. In AISTATS, 2016. [17] Z. Lin, G. Ding, M. Hu, and J. Wang. Multi-label classification via feature-aware implicit label space encoding. In ICML, pages 325–333, 2014. [18] H. Lo, J. Wang, H. Wang, and S. Lin. Cost-sensitive multi-label learning for audio tag annotation and retrieval. IEEE Trans. Multimedia, 13(3):518–529, 2011. [19] J.Nie, W.Kotlowski, and M.K.Warmuth. Online PCA with optimal regrets.Journal of Machine Learning Research, 17:194–200, 2016. [20] A. P. P. Osojnik and D. S. Multi-label classification via multi-target regression on data streams. Machine Learning, 2017. [21] J.Read, A.Bifet,G.Holmes, and B.Pfahringer. Streaming multi-label classification. In Proceedings of the Workshop on Applications of Pattern Analysis (WAPA), pages 19–25, 2011. [22] J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. Machine Learning, 85(3):333–359, 2011. [23] L. Sun, S. Ji, and J. Ye. Canonical correlation analysis for multilabel classification: A least-squares formulation, extensions, and analysis. IEEE TPAMI, 33(1):194–200, 2011. [24] F.Tai and H.Lin. Multilabel classification with principal label space transformation. Neural Computation, 24(9):2508–2542, 2012. [25] G. Tsoumakas, I. Katakis, and I. P. Vlahavas. Mining multi-label data. In Data Mining and Knowledge Discovery Handbook, 2nd ed., pages 667–685. 2010. [26] G. Tsoumakas and I. P. Vlahavas. Random k -labelsets: An ensemble method for multilabel classification. In ECML, pages 406–417, 2007. [27] J.Wang,P.Zhao, and S.C.H.Hoi. Cost-sensitive online classification.IEEETrans. Knowl. Data Eng., 26(10):2425–2438, 2014. [28] M. K. Warmuth and D. Kuzmin. Randomized online pca algorithms with regret bounds that are logarithmic in the dimension. Journal of Machine Learning Re- search, 9:2287–2320, 2008. [29] Y. Wu and H. Lin. Progressive k-labelsets for cost-sensitive multi-label classification. Machine Learning, 2016. Accepted for Special Issue of ACML 2016. [30] E. S. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. P. Vlahavas. Dealing with concept drift and class imbalance in multi-label stream classification. In IJCAI, pages 1583–1588, 2011. [31] H. Yu, P. Jain, P. Kar, and I. S. Dhillon. Large-scale multi-label learning with miss- ing labels. In ICML, pages 593–601, 2014. [32] X. Zhang, T. Graepel, and R. Herbrich. Bayesian online learning for multi-label and multi-variate performance measures. In AISTATS, 2010.
|