(44.192.112.123) 您好!臺灣時間:2021/03/04 06:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張皓宇
研究生(外文):Hao-Yu Chang
論文名稱:應用於擴增實境白內障手術訓練系統之即時多器械追蹤技術
論文名稱(外文):Real-Time Multiple-Instrument Tracking Technique for AR Cataract Surgery Simulation
指導教授:歐陽明歐陽明引用關係
指導教授(外文):Ming Ouhyoung
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:37
中文關鍵詞:擴增實境光學追蹤手術模擬
外文關鍵詞:argumented realityoptical trackingsurgery simulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們提供一套專門應用在擴增實境白內障手術模擬上的即時眼科手 術器械追蹤系統。這套系統可以追蹤常用於白內障手術的幾種器械, Spatular、Chopper 還有 Forceps。此外也可以同時追蹤多隻器械不互相 干擾。為了要能真實呈現手術時候視覺和手感,我們設計了一套獨有 的硬體架構配上演算法。這套系統包含兩台相機,經過我們深入了解 手術過程後,將兩台相機放置在特殊的位置使有最好的追蹤效果。我 們使用電腦視覺演算法,使得手術者在操作這系統時可以握住真實的 手術器械並自由操作不受限制。這套系統的解析度足以追蹤手術時的 精細動作。為了要呈現這套系統的能力,我們也開發了數個手術模擬 練習來呈現這套系統的能力。
A real-time three-dimension eye surgery instruments tracking system is proposed for use with an Argumented Reality cataract surgery training system. Designed for cataract surgery, the system can track some of the main instruments, spatula, chopper, and forceps, and can track multiple instruments simultaneously. To simulate the real surgery in both visual and handling experience, we designed a new hardware structure and software algorithm. The system consists of two infrared cameras placed at the special position to track the position and orientation of the instruments. With computer vision based method, surgeons can move the instrument without any limitation. The system can perform high-resolution tracking and can detect all the delicate movement of surgeons. We design training tasks according to real cataract surgery process to demonstrate the potential of our system.
Abstract iv

1 Introduction 1
1.1 Motivation.................................. 1
1.2 TraditionalTrainingMethods........................ 2
1.3 SimulationPlatforms ............................ 3
1.4 CatAR.................................... 3

2 Related Work 6
2.1 ArgumentedRealityinMicroscope..................... 6
2.2 CataractSurgerySimulationSystems ................... 7
2.3 Microsurgery Surgery Instrument Tracking System ................... 8

3 Hardware Implementation 10
3.1 InstrumentSetup .............................. 11
3.2 CameraModuleandLighting........................ 11

4 Software Implementation 15
4.1 CamerasTracking.............................. 15
4.2 2Dto3DGeometry............................. 18
4.3 PositionandOrientationTracking ..................... 20

5 Application 23
5.1 TheChopperStabilityTrainingTask.................... 23
5.2 TheChopperMobilityTrainingTask.................... 24
5.3 TheForcepsMobilityTrainingTask .................... 25
5.4 TheTracingTraceTask........................... 26
5.5 ContinuousCurvilinearCapsulorhexis................... 26

6 Evaluation 28
6.1 ObjectiveExperiment............................ 28
6.2 SubjectiveExperiment ........................... 29

7 Conclusion and Future Work 33
7.1 Conclusion ................................. 33
7.2 FutureWork................................. 34

References 35
[1] MSICS Virtual Reality Surgical Training Simulator. http://helpmesee.org/
the-solution/training-program/. Accessed: 2016-05-17.
[2] J. Chung, K. Yun, and H. Bang. Microtips: augmenting information for microscopic inspection. In ACM SIGGRAPH 2013 Emerging Technologies, page 10. ACM, 2013.
[3] J. Dequidt, H. Courtecuisse, O. Comas, J. Allard, C. Duriez, S. Cotin, E. Dumortier, O. Wavreille, and J.-F. Rouland. Computer-based training system for cataract surgery. Simulation, 89(12):1421–1435, 2013.
[4] Y.-H. Huang, W.-L. Yang, Y.-L. Kao, Y.-K. Chiu, Y.-B. Huang, H.-Y. Chang, and M. Ouhyoung. A novel dexterous instrument tracking system for augmented reality cataract surgery training system. In SIGGRAPH ASIA 2016 VR Showcase, page 14. ACM, 2016.
[5] I. W. Hunter, L. Jones, T. Doukoglou, S. Lafontaine, P. J. Hunter, and M. Sagar. Ophthalmic microsurgical robot and surgical simulator. In Photonics for Industrial Applications, pages 184–190. International Society for Optics and Photonics, 1995.
[6] N. Hüsken, O. Schuppe, E. Sismanidis, and F. Beier. Microsim-a microsurgical training simulator. In MMVR, pages 205–209, 2013.
[7] S. Kitazawa, K. Sueda, and H. B.-L. Duh. Nanoar: mobile ar application with mi- croscopic interaction. In ACM SIGGRAPH 2012 Posters, page 73. ACM, 2012.
35
[8] V. Lepetit, P. Fua, et al. Monocular model-based 3d tracking of rigid objects: A survey. Foundations and Trends® in Computer Graphics and Vision, 1(1):1–89, 2005.
[9] B. Liu, D. Maier, M. Schill, R. Maenner, et al. Robust real-time localization of surgical instruments in the eye sugery simulator (eyesi).
[10] P. F. Neumann, L. L. Sadler, and J. Gieser. Virtual reality vitrectomy simulator. Springer, 1998.
[11] R. V. O’toole, R. R. Playter, T. M. Krummel, W. C. Blank, N. H. Cornelius, W. R. Roberts, W. J. Bell, and M. Raibert. Measuring and developing suturing technique with a virtual reality surgical simulator. Journal of the American College of Surgeons, 189(1):114–127, 1999.
[12] M. A. Schill, C. Wagner, M. Hennen, H.-J. Bender, and R. Männer. Eyesi–a simu- lator for intra-ocular surgery. In Medical Image Computing and Computer-Assisted Intervention–MICCAI’99, pages 1166–1174. Springer, 1999.
[13] O. Schuppe. An optical tracking system for a microsurgical training simulator. In MMVR, pages 445–449, 2012.
[14] K. Sueda, J. Gu, S. Kitazawa, and H. B.-L. Duh. Micro ar for education: using metaphors for familiar actions. In SIGGRAPH Asia 2011 Emerging Technologies, page 12. ACM, 2011.
[15] F. Wang, E. Su, E. Burdet, and H. Bleuler. Development of a microsurgery training system. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pages 1935–1938. IEEE, 2008.
[16] J. Westwood et al. Real-time marker-based tracking of a non-rigid object. Medicine Meets Virtual Reality 15: In Vivo, in Vitro, in Silico: Designing the Next in Medicine, 125:232, 2007.
[17] K. Yun, J. Chung, Y. Park, B. Lee, W. G. Lee, and H. Bang. Microscopic augmented-reality indicators for long-term live cell time-lapsed imaging. Analyst, 138(11):3196–3200, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔