跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈雯萱
研究生(外文):Wen-Hsuan Shen
論文名稱:使用可見光通訊系統之交通震波消弭
論文名稱(外文):Traffic Shockwave Mitigation with Visible Light Communications
指導教授:蔡欣穆
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:44
中文關鍵詞:可見光通訊正交頻分多工技術交通震波
外文關鍵詞:Visible light communicationsOFDMtraffic shockwave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
交通震波為造成道路塞車的原因之一。許多研究指出透過搭載車間 通訊之自動駕駛系統可以有效消除交通震波,然而,此類的解決方法 仍有些許可改進之處,例如,自動駕駛的成本昂貴,短期內難以成為 車輛市場主流。另一方面,車間通訊多以射頻技術為基礎進行開發, 當車流變大時,射頻的干擾增大,造成訊息丟失或是巨大延遲。因此, 我們針對這兩個方向,設計一套針對人類的駕駛速度推薦系統,使駕 駛人能夠更快獲得前方車輛的速度等交通資訊,降低駕駛對前車速度 改變的反應時間,以此減緩交通震波。同時,我們利用車尾燈及感光 元件以正交頻分多工技術 (OFDM) 為基礎研發出可見光通訊系統,作 為車間通訊之傳輸媒介,藉此有效避免車間通訊的信號干擾與降低封 包延遲現象。實驗結果顯示,我們的系統可有效降低至多 54.6% 的駕 駛反應時間,車間的可見光通訊系統可在至遠 45 公尺,獲得穩定的傳 輸品質與速度。
Traffic shockwave is one of the main reasons for reduced road capacity and jammed traffic. Recent studies have shown that traffic shockwave can be mitigated or eliminated using self-driving vehicles with vehicle-to-vehicle (V2V) communication. Several radio frequency (RF) wireless communica- tion methods have been demonstrated in these studies, such as Wi-Fi and Blue- tooth. However, due to the high cost of self-driving vehicles, this technology is still far deployment in our daily life. Also, the high interference between the wireless signals makes RF communication algorithms more difficult to be designed and implemented.
Our work aims to show that traffic shockwave mitigation can also be achieved by human drivers instead of self-driving vehicles and this work ad- dresses the communication challenges faced by existing RF-based solutions with visible light communications (VLCs). In this thesis, we develop a real- time speed advisory system using VLC to provide drivers of the following car with the speed information of the leading car so that drivers can intuitively match the speed. We also implement real-world V2V communications by uti- lizing the LED taillights of the leading car and making use of a light sensor in the following car. Real-world experimental results show that with this speed advisory system, the reaction time of drivers can be reduced by as much as 54.6%. Furthermore, the VLC system can establish a reliable communication link when the two cars are at a distance of 45 meters.
誌謝 iii
摘要 iv
Abstract v
1 Introduction 1
2 Related Work 6
2.1 TrafficShockwaveElimination....................... 6
2.2 Vehicle-to-vehicle Visible Light Communication (V2LC) . . . . . . . . . 7
3 System Design 8
3.1 Overview .................................. 8
3.2 Background:OFDM ............................ 9
3.3 TheAdoptedOFDMScheme........................ 11
3.3.1 PreambleDesign .......................... 11
3.3.2 TransmitterDesign......................... 11
3.3.3 ReceiverDesign .......................... 13
4 Implementation 17
4.1 Overview .................................. 17
4.2 SpeedAdvisoryandUserInterface..................... 19
4.2.1 VehicleSpeedMeasurement .................... 19
4.2.2 SpeedadvisoryandUserInterface................. 19
4.3 VisibleLightCommunication........................ 21
4.3.1 ArchitectureofTransmitter..................... 21
4.3.2 ArchitectureofReceiver ...................... 22
4.3.3 Real-timeVLCdecodingAlgorithm................ 23
4.4 End-to-EndSystemDelay ......................... 24
5 Evaluation 26
5.1 LIDAR–vehiclepositionmeasurement .................. 26
5.2 PerformanceoftheVLCsystem ...................... 27
5.2.1 Throughputperformance...................... 27
5.2.2 BERofdifferentincidenceangles ................. 29
5.2.3 Symbol reception in common driving scenarios . . . . . . . . . . 32
5.3 Performanceofthespeedadvisorysystem................. 34
5.3.1 DrivingRouteandTesingConditions . . . . . . . . . . . . . . . 34
5.3.2 DriverReactionDelayAlgorithm ................. 35
5.4 DriverPerformanceResults......................... 36
6 Conclusion and Future Work ................. 40
Bibliography................. 42
[1] 2011 highway capacity manual in taiwan.
[2] Kvaser leaf professional hs obdii. https://www.kvaser.com/product/
kvaser-leaf-professional-hs-obdii/.
[3] Nissan march specs. https://en.nissan.co.th/vehicles/new-vehicles/
march/specifications.html.
[4] M.Z.Afgani,H.Haas,H.Elgala,andD.Knipp.VisibleLightCommunicationUsing OFDM. In 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006., pages 129–134. IEEE, 2006.
[5] M.BehlandR.Mangharam.PacerCars:Real-TimeTrafficShockwaveSuppression. IEEE Real–Time Systems Symposium(RTSS), 2010.
[6] P. Breton, A. Hegyi, B. De Schutter, and H. Hellendoorn. Shock wave elimina- tion/reduction by optimal coordination of variable speed limits. In IEEE 5th Inter- national Conference on Intelligent Transportation Systems., pages 225–230. IEEE.
[7] R. E. Chandler, R. Herman, and E. W. Montroll. Traffic Dynamics: Studies in Car Following. pages 1–21, Nov. 1957.
[8] A.-L. Chen, H.-P. Wu, Y.-L. Wei, and H.-M. Tsai. Time variation in vehicle-to- vehicle visible light communication channels. VNC, pages 1–8, 2016.
[9] M. Forster, R. Frank, M. Gerla, and T. Engel. Improving highway traffic through partial velocity synchronization. In GLOBECOM 2012 - 2012 IEEE Global Com- munications Conference, pages 5573–5578. IEEE, 2012.
[10] M. Forster, R. Frank, M. Gerla, and T. Engel. A cooperative advanced driver assis- tance system to mitigate vehicular traffic shock waves. In Proc. IEEE Conference on Computer Communications (INFOCOM), pages 1968–1976, April 2014.
[11] D. C. Gazis, Robert Herman, and R. W. Rothery. Non-Linear Fol- low the Leader Models of Traffic Flow. OPERATIONS RESEARCH, pages 545–567, Aug. 1961.
[12] Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, and K. Kamakura. A New Automotive VLC System Using Optical Communication Image Sensor. IEEE Photonics Journal, 8(3):1–17, 2016.
[13] A.Hegyi,S.P.Hoogendoorn,M.Schreuder,H.Stoelhorst,andF.Viti.SPECIALIST: A dynamic speed limit control algorithm based on shock wave theory. In 2008 11th International IEEE Conference on Intelligent Transportation Systems (ITSC), pages 827–832. IEEE, 2008.
[14] L.HuangandJ.Wu.AFreeway/ExpresswayShockwaveEliminationMethodBased on IoT. In LTLGB 2012, pages 51–57. Springer Berlin Heidelberg, Berlin, Heidel- berg, May 2013.
[15] D.-R. Kim, S.-H. Yang, H.-S. Kim, Y.-H. Son, and S.-K. Han. Outdoor Visible Light Communication for inter- vehicle communication using Controller Area Network. In 2012 Fourth International Conference on Communications and Electronics (ICCE, pages 31–34. IEEE, 2012.
[16] P. Luo, Z. Ghassemlooy, H. Le Minh, E. Bentley, A. Burton, and X. Tang. Fun- damental analysis of a car to car visible light communication system. In 2014 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), pages 1011–1016. IEEE, 2014.
[17] Ministry of Tranportation and Communications, Taiwan. Wugu-yangmei elevated road. http://gip.taneeb.gov.tw/ct.asp?xItem=23777&ctNode=3887.
[18] S.-i. Mun. Traffic jams and the congestion toll. Transportation Research Part B: ..., 28(5):365–375, Oct. 1994.
[19] K. Siddiqi, A. D. Raza, and S. S. Muhammad. Visible light communication for V2V intelligent transport system. In 2016 International Conference on Broadband Com- munications for Next Generation Networks and Multimedia Applications (CoBCom), pages 1–4. IEEE, 2016.
[20] M. G. Wing, A. Eklund, and L. D. Kellogg. Consumer-Grade Global Positioning System (GPS) Accuracy and Reliability. 2005.
[21] T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito. Image-sensor-based visible light com- munication for automotive applications. IEEE Communications Magazine, 2014.
[22] S.-H.Yu,O.Shih,H.-M.Tsai,andR.Roberts.Smartautomotivelightingforvehicle safety. IEEE Communications Magazine, 51(12):50–59, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top