|
Amin, K. I. (1993). Jump Diffusion Option Valuation in Discrete Time. Journal of Finance 48(5), 1833–1863.
Atkinson, K. (1989). An Introduction to Numerical Analysis (2nd ed.). New York: John Wiley & Sons.
Ayache, E., P. Henrotte, S. Nassar, and X. Wang (2004). Can Anyone Solve the Smile Problem? Wilmott Magazine 1, 78–96.
Bank for International Settlements (2016). Notional Amounts Outstanding of Global OTC Derivatives Market. Available online at https://www.bis.org/statistics/about_derivatives_stats.htm?m=6%7C32.
Barle, S. and N. Cakici (1999). How To Grow a Smiling Tree. Journal of Financial Engineering 7(2), 127–146.
Black, F. and M. Scholes (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81(3), 637–654.
Boyle, P. and S. Lau (1994). Bumping Up Against the Barrier with the Binomial Method. Journal of Derivatives 1(4), 6–14.
Britten-Jones, M. and A. J. Neuberger (2000). Option Prices, Implied Price Processes, and Stochastic Volatility. Journal of Finance 55(2), 839–866.
Campolieti, G. and R. Makarov (2014). Financial Mathematics: A Comprehensive Treatment. Boca Raton, FL: Chapman & Hall/CRC.
Caprio, G. (2012). The Evidence and Impact of Financial Globalization (2nd ed.). San Diego, CA: Elsevier.
Chance, D. M. (2008). A Synthesis of Binomial Option Pricing Models for Lognormally Distributed Asset. Journal of Applied Finance 18(1), 38–56.
Charalambous, C., N. Christofides, E. Constantinide, and S. Martzoukos (2007). Implied Non-Recombining Trees and Calibration for the Volatility Smile. Quantitative Finance 7(4), 459–472.
Chen, R.-R., C.-F. Lee, and H.-H. Lee (2009). Empirical Performance of the Constant Elasticity Variance Option Pricing Model. Review of Pacific Basin Financial Markets and Policies 12(2), 177–217.
Cox, J. C. (1975). Notes on Option Pricing I: Constant Elasticity of Variance Diffusion. Unpublished Note, Graduate School of Business, Stanford University.
Cox, J. C., S. A. Ross, and M. Rubinstein (1979). Option Pricing: A Simplified Approach. Journal of Financial Economics 7(3), 229–263.
Dai, T.-S. and Y.-D. Lyuu (2010). The Bino-Trinomial Tree: A Simple Model for Efficient and Accurate Option Pricing. Journal of Derivatives 193(4), 212–221.
Derman, E. and I. Kani (1994). Riding on a Smile. Risk 7(2), 32–39.
Derman, E. and I. Kani (1998). Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility. International Journal of Theoretical and Applied Finance 1(1), 61–110.
Derman, E., I. Kani, and N. Chriss (1996). Implied Trinomial Trees of the Volatility Smile. Journal of Derivatives 3(4), 7–22.
Devaney, R. L. (1992). A First Course in Chaotic Dynamical Systems: Theory and Experiment. Cambridge, MA: Westview Press.
Duffie, D. (2001). Dynamic Asset Pricing Theory (3rd ed.). Princeton: Princeton University Press.
Duffie, D., J. Pan, and K. Singleton (2000). Transform Analysis and Asset Pricing for Affine Jump-Diffusions. Econometrica 68(6), 1343–1376.
Dumas, B., J. Fleming, and R. Whaley (1998). Implied Volatility Functions: Empirical Tests. Journal of Finance 53(6), 2059–2106.
Dupire, B. (1994). Pricing with a Smile. Risk 7(1), 18–20. Fengler, M. R. (2005). Semiparametric Modeling of Implied Volatility. Berlin: Springer.
Figlewski, S. and B. Gao (1999). The Adaptive Mesh Model: A New Approach to Efficient Option pricing. Journal of Financial Economics 53(3), 313–351.
Guthrie, G. (2011). Learning Options and Binomial Trees. Wilmott Magazine 3(1), 1–23.
Haahtela, T. J. (2010). Recombining Trinomial Tree for Real Option Valuation with Changing Volatility. Available at SSRN 1932411.
Hagan, P. S., D. Kumar, A. S. Lesniewski, and D. E. Woodward (2002). Managing Smile Risk. Wilmott Magazine 1(1), 84–108.
Heston, S. L. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Review of Financial Studies 6(2), 327– 343.
Hull, J. and W. Suo (2002). A Methodology for Assessing Model Risk and Its Application to the Implied Volatility Function Model. Journal of Financial and Quantitative Analysis 37(2), 297–318.
Hull, J. and A. White (1987). The Pricing of Options on Assets with Stochastic Volatility. Journal of Finance 42(2), 281–300.
Jackwerth, J. (1997). Generalized Binomial Tree. Journal of Derivatives 5(2), 7–17.
Jarrow, R. and A. Rudd (1983). Option Pricing. Irwin, IL: Homewood.
Kamp, R. (2009). Local Volatility Modelling. Master’s thesis, University of Twente, Enschede, the Netherlands.
Kou, S. G. (2002). A Jump-Diffusion Model for Option Pricing. Management Science 48(8), 1086–1101.
Kwok, Y.-K. (2008). Mathematical Models of Financial Derivatives (2nd ed.). Berlin: Springer.
Li, Y. (2000). A New Algorithm for Constructing Implied Binomial Trees: Does the Implied Model Fit Any Volatility Smile? Journal of Financial Engineering 4(2), 69–95.
Lim, K. G. and D. Zhi (2002). Pricing Options Using Implied Trees: Evidence from FTSE-100 Options. Management Science 22(7), 601–626.
Linaras, H. and G. Skiadopoulos (2005). Implied Volatility Trees and Pricing Performance: Evidence from the S&P100 Options. International Journal of Theoretical and Applied Finance 8(8), 1085–1106.
Lok, U. H. and Y.-D. Lyuu (2017). The Waterline Tree for Separable Local-Volatility Models. Computers and Mathematics with Applications 73(4), 537–559.
Lu, R. and Y.-H. Hsu (2005). Valuation of Standard Options under the Constant Elasticity of Variance Model. International Journal of Business and Economics 4(2), 157–165.
Lyuu, Y.-D. (2002). Financial Engineering and Computation: Principles, Mathematics, Algorithms. Cambridge: Cambridge University Press.
Merton, R. C. (1976). Option Pricing When Underlying Stock Returns Are Discontinuous. Journal of Financial Economics 3(1), 125–144.
Moriggia, V., S. Muzzioli, and C. Torricelli (2009). On the No-Arbitrage Condition in Option Implied Trees. European Journal of Operational Research 17(4), 7–24.
Nelson, D. and K. Ramaswamy (1990). Simple Binomial Processes as Diffusion Approximations in Financial Models. Review of Financial Studies 3(3), 393–430.
Rebonato, R. (2004). Volatility and Correlation. West Sussex, UK: John Wiley & Sons.
Ritchken, P. (1995). On Pricing Barrier Options. Journal of Derivatives (3), 19–28.
Rubinstein, M. (1994). Implied Binomial Tree. Journal of Finance 49(3), 771–818.
Skiadopoulos, G. (2001). Volatility Smile Consistent Option Models: A Survey. International Journal of Theoretical and Applied Finance 4(3), 403–437.
Tsai, T.-Y. (2008). An Alternative Method of Options Pricing by Implied Trees. Master’s thesis, Department of Finance, National Taiwan University, Taipei, Taiwan.
|