|
[1] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987. [2] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003. [3] T. K. Landauer, Latent semantic analysis. Wiley Online Library, 2006. [4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” in Advances in neural information processing systems, pp. 3111–3119, 2013. [5] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation.,” vol. 14, pp. 1532–1543, 2014. [6] A. Neelakantan, J. Shankar, A. Passos, and A. McCallum, “Efficient non-parametric estimation of multiple embeddings per word in vector space,” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014. [7] J. Reisinger and R. J. Mooney, “Multi-prototype vector-space models of word meaning,” in Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 109–117, Association for Computational Linguistics, 2010. [8] E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng, “Improving Word Representations via Global Context and Multiple Word Prototypes,” in Annual Meeting of the Association for Computational Linguistics (ACL), 2012. [9] J. Li and D. Jurafsky, “Do multi-sense embeddings improve natural language understanding?,” Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1722–1732, 2015. [10] L. Qiu, K. Tu, and Y. Yu, “Context-dependent sense embedding,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016. [11] G.-H. Lee and Y.-N. Chen, “MUSE: Modulizing unsupervised sense embeddings,” in in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2017. [12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” Proceedings of Workshop at ICLR, 2013. [13] E. Arisoy, T. N. Sainath, B. Kingsbury, and B. Ramabhadran, “Deep neural network language models,” in Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pp. 20–28, Association for Computational Linguistics, 2012. [14] N.-Q. Pham, G. Kruszewski, and G. Boleda, “Convolutional neural network language models,” in Proc. of EMNLP, 2016. [15] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, “Recurrent neural network based language model.,” in Interspeech, vol. 2, p. 3, 2010. [16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” NIPS Deep Learning Workshop, 2013. [17] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes,” Advances in neural information processing systems, vol. 2, pp. 841–848, 2002. [18] F. Mosteller and J. W. Tukey, “Data analysis and regression: a second course in statistics.,” Addison-Wesley Series in Behavioral Science: Quantitative Methods, 1977. [19] F. Tian, H. Dai, J. Bian, B. Gao, R. Zhang, E. Chen, and T.-Y. Liu, “A probabilistic model for learning multi-prototype word embeddings.,” in COLING, pp. 151–160, 2014. [20] S. K. Jauhar, C. Dyer, and E. H. Hovy, “Ontologically grounded multi-sense representation learning for semantic vector space models.,” in HLT-NAACL, pp. 683–693, 2015. [21] S. Bartunov, D. Kondrashkin, A. Osokin, and D. Vetrov, “Breaking sticks and ambiguities with adaptive skip-gram,” Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, p. 130–138, 2016. [22] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, vol. 1. MIT press Cambridge, 1998. [23] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing neural predictions,” Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016. [24] M. Kågebäck, F. Johansson, R. Johansson, and D. Dubhashi, “Neural context embeddings for automatic discovery of word senses,” in Proceedings of NAACL-HLT, pp. 25–32, 2015. [25] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Dueling network architectures for deep reinforcement learning,” 2016. [26] C. Shaoul and C. Westbury, “The westbury lab wikipedia corpus,” 2010. [27] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky, “The Stanford CoreNLP natural language processing toolkit,” in Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60, 2014. [28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016. [29] T. Lei, R. Barzilay, and T. Jaakkola, “Molding cnns for text: non-linear, nonconsecutive convolutions,” 2015. [30] P. D. Turney, “Mining the web for synonyms: Pmi-ir versus lsa on toefl,” in European Conference on Machine Learning, pp. 491–502, Springer, 2001. [31] M. Jarmasz and S. Szpakowicz, “Roget’s thesaurus and semantic similarity,” Recent Advances in Natural Language Processing III: Selected Papers from RANLP, vol. 2003, p. 111, 2004. [32] T. K. Landauer and S. T. Dumais, “A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge.,” Psychological review, vol. 104, no. 2, p. 211, 1997. [33] Z. Zhong and H. T. Ng, “It makes sense: A wide-coverage word sense disambiguation system for free text,” in Proceedings of the ACL 2010 System Demonstrations, pp. 78–83, Association for Computational Linguistics, 2010. [34] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the ACM, vol. 38, no. 11, pp. 39–41, 1995. [35] S. Manandhar, I. P. Klapaftis, D. Dligach, and S. S. Pradhan, “Semeval-2010 task 14: Word sense induction & disambiguation,” in Proceedings of the 5th international workshop on semantic evaluation, pp. 63–68, Association for Computational Linguistics, 2010. [36] X. Chen, Z. Liu, and M. Sun, “A unified model for word sense representation and disambiguation.,” in EMNLP, pp. 1025–1035, Citeseer, 2014. [37] T. Vu and D. S. Parker, “K-embeddings: Learning conceptual embeddings for words using context,” in Proceedings of NAACL-HLT, pp. 1262–1267, 2016. [38] J. Guo, W. Che, H. Wang, and T. Liu, “Learning sense-specific word embeddings by exploiting bilingual resources.,” in COLING, pp. 497–507, 2014. [39] M. T. Pilehvar and N. Collier, “De-conflated semantic representations,” Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016. [40] S. Rothe and H. Schütze, “Autoextend: Extending word embeddings to embeddings for synsets and lexemes,” arXiv preprint arXiv:1507.01127, 2015. [41] T. Chen, R. Xu, Y. He, and X. Wang, “Improving distributed representation of word sense via wordnet gloss composition and context clustering,” Association for Computational Linguistics, 2015. [42] I. Iacobacci, M. T. Pilehvar, and R. Navigli, “Sensembed: Learning sense embeddings for word and relational similarity.,” in ACL (1), pp. 95–105, 2015. [43] A. Ettinger, P. Resnik, and M. Carpuat, “Retrofitting sense-specific word vectors using parallel text,” in Proceedings of NAACL-HLT, pp. 1378–1383, 2016. [44] S. Šuster, I. Titov, and G. van Noord, “Bilingual learning of multi-sense embeddings with discrete autoencoders,” NAACL-HLT 2016, 2016. [45] P. Liu, X. Qiu, and X. Huang, “Learning context-sensitive word embeddings with neural tensor skip-gram model.,” in IJCAI, pp. 1284–1290, 2015. [46] Y. Liu, Z. Liu, T.-S. Chua, and M. Sun, “Topical word embeddings.,” in AAAI, pp. 2418–2424, 2015.
|