|
Agarwal, P., Tipaldi, G. D., Spinello, L., Stachniss, C., & Burgard, W. (2013). Robust map optimization using dynamic covariance scaling. In IEEE International Conference on Robotics and Automation (ICRA), (pp. 62–69). Bahl, P. & Padmanabhan, V. N. (2000). Radar: An in-building rf-based user location and tracking system. In IEEE International Conference on Computer Communications (INFOCOM), (pp. 775–784). Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics), chapter 3.1. Secaucus, NJ, USA: Springer-Verlag New York, Inc. Bonilla, E. V., Ming, K., Chai, A., & Williams, C. K. I. (2008). Multi-task gaussian process prediction. Advances in Neural Information Processing Systems (NIPS), 20, 153–160. Brena, R. F., Garc´ıa-Vazquez, J., Galv ´ an-Tejada, C. E., Rodr ´ ´ıguez, D. M., Rosales, C. V., & Jr., J. F. (2017). Evolution of indoor positioning technologies: A survey. Journal of Sensors, 2017, 2630413:1–2630413:21. Carlone, L., Aragues, R., Castellanos, J. A., & Bona, B. (2014). A fast and accurate approximation for planar pose graph optimization. International Journal of Robotics Research, 33(7), 965–987. Chen, C., Chen, Y., Han, Y., Lai, H., Zhang, F., & Liu, K. J. R. (2017). Achieving centimeteraccuracy indoor localization on wifi platforms: A multi-antenna approach. IEEE Internet of Things Journal, 4(1), 122–134. Chen, L.-H., Wu, E.-K., Jin, M.-H., & Chen, G.-H. (2014). Homogeneous features utilization to address the device heterogeneity problem in fingerprint localization. IEEE Sensors Journal, 14(4), 998–1005. Cheng, H., y. Luo, H., & Zhao, F. (2012). Device-clustering algorithm in crowdsourcingbased localization. Journal of China Universities of Posts and Telecommunications, 19, 114–121. Cheng, Y.-C., Chawathe, Y., LaMarca, A., & Krumm, J. (2005). Accuracy characterization for metropolitan-scale wi-fi localization. In International Conference on Mobile Systems, Applications, and Services (MobiSys), (pp. 233–245)., New York, NY, USA. Deyle, T., Kemp, C. C., & Reynolds, M. S. (2008). Probabilistic UHF RFID tag pose estimation with multiple antennas and a multipath RF propagation model. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (pp. 1379–1384). Dong, F., Chen, Y., Liu, J., Ning, Q., & Piao, S. (2009). A calibration-free localization solution for handling signal strength variance. In International Workshop on Mobile Entity Localization and Tracking in GPS-less Environnments (MELT), volume 5801, (pp. 79–90). Fearnhead, P. (2005). Exact bayesian curve fitting and signal segmentation. IEEE Transactions on Signal Processing, 53(6), 2160–2166. Fearnhead, P. & Liu, Z. (2007). On-line inference for multiple changepoint problems. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), 589–605. Ferris, B., Fox, D., & Lawrence, N. (2007). Wifi-slam using gaussian process latent variable models. In International Joint Conference on Artificial Intelligence (IJCAI), (pp. 2480–2485). Ferris, B., Hahnel, D., & Fox, D. (2006). Gaussian processes for signal strength-based location estimation. In Robotics: Science and Systems (RSS). Figuera, C., Rojo-Alvarez, J. L., Mora-Jim ´ enez, I., Guerrero-Curieses, A., Wilby, M. R., & Ramos-Lopez, J. (2011). Time-space sampling and mobile device calibration for wifi indoor location systems. IEEE Transactions on Mobile Computing, 10(7), 913–926. Gjengset, J., Xiong, J., McPhillips, G., & Jamieson, K. (2014). Phaser: enabling phased array signal processing on commodity wifi access points. In International Conference on Mobile Computing and Networking (MobiCom), (pp. 153–164). Gutmann, J., Eade, E., Fong, P., & Munich, M. E. (2012). Vector field SLAM - localization by learning the spatial variation of continuous signals. IEEE Transactions on Robotics, 28(3), 650–667. Haeberlen, A., Flannery, E., Ladd, A. M., Rudys, A., Wallach, D. S., & Kavraki, L. E. (2004). Practical robust localization over large-scale 802.11 wireless networks. In International Conference on Mobile Computing and Networking (MobiCom). Halperin, D., Hu, W., Sheth, A., & Wetherall, D. (2011). Tool release: Gathering 802.11n traces with channel state information. SIGCOMM Computer Communication Review, 41(1), 53–53. He, S. & Chan, S. G. (2016). Wi-fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys and Tutorials, 18(1), 466–490. Herranz, F., Llamazares, A., Molinos, E. J., Ocana, M., & Sotelo, M. ˜ A. (2016). Wifi SLAM algorithms: an experimental comparison. Robotica, 34(4), 837–858. Huang, J., Millman, D., Quigley, M., Stavens, D., Thrun, S., & Aggarwal, A. (2011). Efficient, generalized indoor wifi graphslam. In IEEE International Conference on Robotics and Automation (ICRA), (pp. 1038–1043). Jiang, J., Lin, C., Lin, F., & Huang, S. (2013). ALRD: aoa localization with RSSI differences of directional antennas for wireless sensor networks. International Journal of Distributed Sensor Networks (IJDSN), 9. Jiang, Y., Pan, X., Lv, K. L. Q., Dick, R. P., & Shang, M. H. L. (2012). Ariel: Automatic wi-fi based room fingerprinting for indoor localization. In ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp). Kjargaard, M. B. & Munk, C. V. (2008). Hyperbolic location fingerprinting: A calibrationfree solution for handling differences in signal strength (concise contribution). In IEEE International Conference on Pervasive Computing and Communications (PerCom), (pp. 110–116). Kotaru, M., Joshi, K. R., Bharadia, D., & Katti, S. (2015). Spotfi: Decimeter level localization using wifi. SIGCOMM Computer Communication Review, 45(5), 269–282. Krystek, M. & Anton, M. (2007). A weighted total least-squares algorithm for fitting a straight line. Measurement Science and Technology, 18(11), 3438. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). G ¨ 2o: A general framework for graph optimization. In IEEE International Conference on Robotics and Automation (ICRA), (pp. 3607–3613). Kummerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., & Kleiner, ¨A. (2009). On measuring the accuracy of SLAM algorithms. Autonomous Robots, 27(4), 387–407. Laoudias, C., Piche, R., & Panayiotou, C. G. (2013). Device self-calibration in location systems using signal strength histograms. Journal of Location Based Services, 7(3), 165–181. Laoudias, C., Zeinalipour-Yazti, D., & Panayiotou, C. G. (2013). Crowdsourced indoor localization for diverse devices through radiomap fusion. In International Conference on Indoor Positioning and Indoor Navigation (IPIN). Latif, Y., Lerma, C. D. C., & Neira, J. (2013). Robust loop closing over time for pose graph SLAM. International Journal of Robotics Research, 32(14), 1611–1626. Lee, M., Jung, S. H., Lee, S., & Han, D. (2012). Elekspot: A platform for urban place recognition via crowdsourcing. In IEEE/IPSJ International Symposium on Applications and the Internet (SAINT), (pp. 190–195). Lee, S., Jung, S., & Han, D. (2012). Uncaught signal imputation for accuracy enhancement of wlan-based positioning systems. In ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems, (pp. 80–85)., New York, NY, USA. Lin, T.-H., Ng, I.-H., Lau, S.-Y., Chen, K.-M., & Huang, P. (2008). A microscopic examination of an rssi-signature-based indoor localization system. In Workshop on Embedded Networked Sensors (HotEmNets). Lu, F. & Milios, E. E. (1997). Globally consistent range scan alignment for environment mapping. Autonomous Robots, 4(4), 333–349. Machaj, J., Brida, P., & Piche, R. (2011). Rank based fingerprinting algorithm for indoor positioning. In International Conference on Indoor Positioning and Indoor Navigation (IPIN), (pp. 1–6). Mahtab Hossain, A., Jin, Y., Soh, W.-S., & Van, H. N. (2013). Ssd: A robust rf location fingerprint addressing mobile devices’ heterogeneity. IEEE Transactions on Mobile Computing, 12(1), 65–77. Menegatti, E., Zanella, A., Zilli, S., Zorzi, F., & Pagello, E. (2009). Range-only SLAM with a mobile robot and a wireless sensor networks. In IEEE International Conference on Robotics and Automation (ICRA), (pp. 8–14). Miyagusuku, R., Yamashita, A., & Asama, H. (2016). Improving gaussian processes based mapping of wireless signals using path loss models. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (pp. 4610–4615). Niehsen, W. (2002). Information fusion based on fast covariance intersection filtering. In International Conference on Information Fusion. Olson, E. & Agarwal, P. (2013). Inference on networks of mixtures for robust robot mapping. International Journal of Robotics Research, 32(7), 826–840. Olson, E., Leonard, J. J., & Teller, S. J. (2006). Fast iterative alignment of pose graphs with poor initial estimates. In IEEE International Conference on Robotics and Automation (ICRA), (pp. 2262–2269). Pan, J. J., Pan, S. J., Yin, J., Ni, L. M., & Yang, Q. (2012). Tracking mobile users in wireless networks via semi-supervised colocalization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3), 587–600. Park, J.-g., Curtis, D., Teller, S. J., & Ledlie, J. (2011). Implications of device diversity for organic localization. In IEEE International Conference on Computer Communications (INFOCOM), (pp. 3182–3190). Pfingsthorn, M. & Birk, A. (2016). Generalized graph SLAM: solving local and global ambiguities through multimodal and hyperedge constraints. International Journal of Robotics Research, 35(6), 601–630. Rasmussen, C. E. & Nickisch, H. (2010). Gaussian processes for machine learning (gpml) toolbox. Journal of Machine Learning Research, 11, 3011–3015. Ridley, M., Upcroft, B., Ong, L.-L., Kumar, S., & Sukkarieh, S. (2004). Decentralised data fusion with parzen density estimates. In Intelligent Sensors, Sensor Networks and Information Processing Conference, (pp. 161–166). Rosa, F., Xu, L., Nurmi, J., Pelosi, M., Laoudias, C., & Terrezza, A. (2011). Hand-grip and body-loss impact on rss measurements for localization of mass market devices. In International Conference on Localization and GNSS (ICL-GNSS), (pp. 58–63). Schssel, M. (2016). Angle of arrival estimation using wifi and smartphones. In International Conference on Indoor Positioning and Indoor Navigation (IPIN). Schwaighofer, A., Grigoras, M., Tresp, V., & Hoffmann, C. (2004). GPPS: A gaussian process positioning system for cellular networks. Advances in Neural Information Processing Systems (NIPS), 16, 579–586. Seco, F., Plagemann, C., Jimenez, A., & Burgard, W. (2010). Improving rfid-based indoor positioning accuracy using gaussian processes. In International Conference on Indoor Navigation and Indoor Positioning (IPIN). Sunderhauf, N. & Protzel, P. (2012). Towards a robust back-end for pose graph SLAM. In IEEE International Conference on Robotics and Automation (ICRA), (pp. 1254–1261). Tao, P., Rudys, A., Ladd, A. M., & Wallach, D. S. (2003). Wireless lan location-sensing for security applications. In ACM Workshop on Wireless Security, (pp. 11–20)., New York, NY, USA. Tsui, A. W., Chuang, Y.-H., & Chu, H.-H. (2009). Unsupervised learning for solving rss hardware variance problem in wifi localization. Mobile Networks and Applications, 14(5), 677–691. Tzur, A., Amrani, O., & Wool, A. (2015). Direction finding of rogue wi-fi access points using an off-the-shelf MIMO-OFDM receiver. Physical Communication, 17, 149–164. Wu, Z., hung Li, C., Ng, J. K.-Y., & Leung, K. R. P. H. (2007). Location estimation via support vector regression. IEEE Transactions on Mobile Computing, 6(3), 311–321. Xiong, H. & Tao, D. (2017). A diversified generative latent variable model for wifi-slam. In AAAI Conference on Artificial Intelligence, (pp. 3841–3847). Xiong, J. & Jamieson, K. (2013). Arraytrack: A fine-grained indoor location system. In USENIX Symposium on Networked Systems Design and Implementation (NSDI), (pp. 71–84). Yang, S., Dessai, P., Verma, M., & Gerla, M. (2013). Freeloc: Calibration-free crowdsourced indoor localization. In IEEE International Conference on Computer Communications (INFOCOM). Zheng, V. W., Pan, S. J., Yang, Q., & Pan, J. J. (2008). Transferring multi-device localization models using latent multi-task learning. In AAAI Conference on Artificial Intelligence, (pp. 1427–1432).
|