(54.236.58.220) 您好!臺灣時間:2021/03/06 22:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭沛軒
研究生(外文):Pei-Hsuan Cheng
論文名稱:整合電動車與再生能源並落實共享經濟於住宅型社區之電力需求管理系統
論文名稱(外文):Demand-side Management in Residential CommunityRealizing Sharing Economy with Bidirectional Plug-inElectric Vehicle and Renewable Energy
指導教授:傅立成傅立成引用關係
指導教授(外文):Li-Chen Fu
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:71
中文關鍵詞:智慧電網需量管理系統再生能源電動車電力交易共享經濟商辦大樓
外文關鍵詞:Demand-side ManagementPlug-in electricity vehiclerenewable energyenergy tradingsharing economycommercial building
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在智慧電網架構中,需量管理系統對於電力需求方與提供方都是一個重要的概念。透過智慧電網與需求端管理,不但可以有效減少家中用電支出還能同時降低電力負載的波動性。另外,由於電動車逐漸普遍,其潛在的電力供給、電能儲存與電力共享更增加了智慧電網的可行性與能力。而當需求管理系統推及到社區時,我們設計了一個公平的電動車共享系統以節省社區的電力支出及電力附載波動。另一方面,更考慮了商辦大樓大量電動車充電之問題,提出了一個有效利用停車場電動車之電力的商辦大樓需量管理系統。本論文中,以同時考慮電動車、再生能源、電力儲存裝置之單一家庭需量管理排程最佳化為基本單位,建構出落實共享經濟之社區型雙層需量管理排程最佳化。更進一步於商辦大樓結構下,提出多量電動車充放電控制排程最佳化以降低大樓電力支出。
在實驗部分,我們請十位使用者提供他們之日常活動資料,以代表十位居住在社區之居民,並以雙層粒子群演算法求得對社區居民最有利之活動排程結果。而商辦大樓則是使用美國公開的用電資料庫,以其中美國加州某地方某日辦公大樓之用電量為基礎,進行多輛電動車之控制排程最佳化。而結果顯示,論文提出之需量管理系統,能有效的幫助社區中所有住戶降低電費支出及降低整個社區之電流負載波動。同時,在商辦大樓中亦能有效減緩多量電動車充電帶來之衝擊且有效利用電池特性,提供大樓額外的電力供給已降低電費支出與電流附載波動。
In smart grids, demand-side management (DSM) is one of the important function since it can reduce the total electricity cost of each customer, meanwhile, alleviate the aggregate peak-to-average ratio (PAR) subject to real-time pricing (RTP) policy. On the other hand, while bidirectional charging/discharging Plug-in Electric vehicles (PEV)become more general, the capability of storing electrical energy for load shifting and energy sharing among users may take smart grid to a next level. On the view point of a community, we design a fairness strategy to share PEV’s battery with neighbors to reduce
the total electricity cost and peak to average ratio (PAR). On the other hand, we try to utilize the PEVs which parked at the commercial building during working hour to fulfill part of the building’s power consumption. In our problem formulation, each home is assumed to be connected to a renewable energy resource (e.g., photovoltaic (PV) system), be equipped with an energy storage device, and have an optional PEV with the vehicle to grid (V2G) ability, and the formulation is in terms of a multi-objective optimization cooperative game to facilitate power sharing among neighbors. As for a commercial building, we rearrange each PEV’s charging/discharging operations to reduce the total
electricity cost of the building. In simulation, we ask ten people to provide their daily activity profiles to represent the residence in the community and use the hourly load profile data from Office of Energy Efficiency & Renewable Energy (EERE) for commercial sector. The results show that the proposed DSM system not only reduces the electricity cost for each household but also reduces the PAR of the community. Moreover, for the commercial building, the proper rearrangement of PEV’s behavior also helps to reduce the total electricity cost and PAR.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Challenges 3
1.2.1 Challenges of Utilizing the PEV 3
1.2.2 Challenges of DSM Realizing Sharing Economy in a Community 4
1.2.3 Challenges of DSM in a Commercial Building 5
1.3 Related work 6
1.4 Contribution 10
1.5 Parameters 12
1.6 Thesis organization 14
Chapter 2 Preliminaries 16
2.1 Demand Side Management 16
2.2 Particle Swarm Optimization 17
2.3 M-CHESS 20
2.4 Privacy Protection Strategy 23
Chapter 3 Community Demand Side Management Realizing Sharing Economy 25
3.1 Smart community Environment 25
3.2 System Architecture 27
3.3 Community Energy Sharing System 31
3.3.1 Input Data Profile 31
3.3.2 Individual Home Activity Scheduling 33
3.3.3 Optimization Flow 38
3.3.4 Two Level Distributed Cooperative Game 40
Chapter 4 Demand Side Management in Commercial Building Parking Space 44
4.1 Commercial building Structure 45
4.2 Systems Architecture 46
4.3 Plug-in Electricity Vehicle Operation Scheduling in Commercial Building 47
Chapter 5 System Evaluation 50
5.1 Evaluation of Residential community 50
5.1.1 Environment Setting 50
5.1.2 User Profile 53
5.1.3 Individual Home Cost Reduction 55
5.1.4 Residential Community Realizing Sharing Economy 58
5.2 Evaluation of Commercial Building with PEV Parking Space 62
5.2.1 Environment Setting 62
5.2.2 Commercial Building Cost Reduction 64
Chapter 6 Conclusions 65
6.1 Summary 65
6.2 Future Work 66
REFERENCE 67
[1]Lopes, J. A., P. F. J. Soares, & P. M. R Almeida. “Integration of electric vehicles in the electric power system”. Proceedings of 2011 IEEE, 99(1), pp. 168-183.
[2]Kuo, H. H., S. K. Pradhan, C. L. Wu, P. H. Cheng, Y. Xie, & L. C Fu. “Dynamic demand-side management with user''s privacy concern in residential community”. Proceedings of 2016 IEEE International Conference on Automation Science and Engineering (CASE), (pp. 1094-1099).
[3]Farhangi, H. “The path of the smart grid”. 2010 IEEE power and energy magazine, 8(1).
[4]Fahrioglu, M., & F. L. Alvarado. “Designing incentive compatible contracts for effective demand management”. 2000 IEEE Transactions on Power systems, 15(4), pp. 1255-1260.
[5]Hsu, Y. Y., & C. C Su. “Dispatch of direct load control using dynamic programming”. 1991IEEE Transactions on Power Systems, 6(3), pp. 1056-1061.
[6]Zhu, Z., J. Tang, S. Lambotharan, W. H. Chin, & Z Fan. “An integer linear programming based optimization for home demand-side management in smart grid”. 2012 IEEE PES on Innovative Smart Grid Technologies (ISGT), (pp. 1-5).
[7]Kinhekar, N., N. P. Padhy, & H. O Gupta. . “Multiobjective demand side management solutions for utilities with peak demand deficit”. 2014 International Journal of Electrical Power & Energy Systems, 55, pp. 612-619.
[8]Logenthiran, T., D. Srinivasan, & T. Z Shun. . “Demand side management in smart grid using heuristic optimization”. 2012 IEEE transactions on smart grid, 3(3), pp. 1244-1252.
[9]Liu, Y., C. Yuen, S. Huang, N. U. Hassan, X. Wang & S Xie. “Peak-to-average ratio constrained demand-side management with consumer''s preference in residential smart grid”. 2014 IEEE Journal of Selected Topics in Signal Processing, 8(6), pp. 1084-1097.
[10]Ogwumike, C., M. Short, & M Denai. “Near-optimal scheduling of residential smart home appliances using heuristic approach”. 2015 IEEE International Conference on Industrial Technology (ICIT), (pp. 3128-3133).
[11]Mohsenian-Rad, A. H., V. W. Wong, J. Jatskevich, R. Schober & A Leon-Garcia. “Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid”. 2010 IEEE transactions on Smart Grid, 1(3), pp. 320-331.
[12]Atzeni, I., L. G. Ordóñez, G. Scutari, D. P. Palomar, & J. R Fonollosa. “Demand-side management via distributed energy generation and storage optimization”. 2013 IEEE Transactions on Smart Grid, 4(2), pp. 866-876.
[13]Zhang, W., G. Chen, Y. Su, Z. Dong, & J Li. “A dynamic game behavior: Demand side management based on utility maximization with renewable energy and storage integration”. 2014 IEEE Australasian Universities in Power Engineering Conference (AUPEC), (pp. 1-5).
[14]Turker, H., A. Hably & S Bacha. “Housing peak shaving algorithm (HPSA) with plug-in hybrid electric vehicles (PHEVs): Vehicle-to-Home (V2H) and Vehicle-to-Grid (V2G) concepts”. 2013 Fourth International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), (pp. 753-759).
[15]Nguyen, D. T., & L. B Le. “Joint optimization of electric vehicle and home energy scheduling considering user comfort preference”. 2014 IEEE Transactions on Smart Grid, 5(1), pp. 188-199.
[16]Zou, N., L. Qian, J. Attia, & L Xie. “Optimization of Home Energy Usage by Intelligently Charging/Discharging EV/PHEV”. 2012 International Conference on Connected Vehicles and Expo (ICCVE), (pp. 316-321).
[17]Tushar, M. H. K., C. Assi, M. Maier, & M. F Uddin. “Smart microgrids: Optimal joint scheduling for electric vehicles and home appliances”. 2014 IEEE Transactions on Smart Grid, 5(1), pp. 239-250.
[18]Arani, M. F., & Y Mohamed. “Cooperative Control of Wind Power Generator and Electric Vehicles for Microgrid Primary Frequency Regulation”. 2017 IEEE Transactions on Smart Grid.
[19]Al Hasib, A., N. Nikitin, & L Natvig. “Load scheduling in smart buildings with bidirectional energy trading”. 2014 IEEE International on Performance Computing and Communications Conference (IPCCC), (pp. 1-2).
[20]Sherif, H., Z. Zhu, & S Lambotharan. “An optimization framework for home demand side management incorporating electric vehicles”. 2014 IEEE on Innovative Smart Grid Technologies-Asia (ISGT Asia), (pp. 57-61).
[21]Kim, B. G., S. Ren, M. van der Schaar, & J. W Lee. “Bidirectional energy trading and residential load scheduling with electric vehicles in the smart grid”. 2013 IEEE Journal on Selected Areas in Communications, 31(7), pp. 1219-1234.
[22]CELIK, B., R. Roche, D. Bouquain, & A Miraoui. “Decentralized neighborhood energy management with coordinated smart home energy sharing”. 2017 IEEE Transactions on Smart Grid.
[23]Ma, Z., D. S. Callaway, & I. A Hiskens. “Decentralized charging control of large populations of plug-in electric vehicles”. 2013 IEEE Transactions on Control Systems Technology, 21(1), pp. 67-78.
[24]Zheng, Y., Z. Y. Dong, Y. Xu, K. Meng, J. H. Zhao, & J Qiu. “Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning”. 2014 IEEE Transactions on Power Systems, 29(1), pp. 221-229.
[25]Chen, Q., F. Wang, B. M. Hodge, J. Zhang, Z. Li, M. Shafie-khah, & J. P Catalao. “Dynamic Price Vector Formation Model Based Automatic Demand Response Strategy for PV-assisted EV Charging Station”. 2017 IEEE Transactions on Smart Grid.
[26]Shafie-khah, M., P. Siano, D. Z. Fitiwi, N. Mahmoudi, & J. P Catalão. “An Innovative Two-Level Model for Electric Vehicle Parking Lots in Distribution Systems with Renewable Energy”. 2017 IEEE Transactions on Smart Grid.
[27]Mehta, R., D. Srinivasan, & A Trivedi. “Optimal charging scheduling of plug-in electric vehicles for maximizing penetration within a workplace car park”. 2016 IEEE Congress on Evolutionary Computation (CEC), (pp. 3646-3653).
[28]Zhou, Y., D. Yau, P. You, & P Cheng. “Optimal-Cost Scheduling of Electrical Vehicle Charging under Uncertainty”. 2017 IEEE Transactions on Smart Grid.
[29]Genikomsakis, K. N., B. Bocquier, S. Lopez, & C. S Ioakimidis. “Utilizing Plug-in Electric Vehicles for Peak Shaving and Valley Filling in Non-residential Buildings with Solar Photovoltaic Systems”. 2016 5th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS) (pp. 179-188).
[30]Maharjan, I. K. “Demand side management: Load management, load profiling, load shifting, residential and industrial consumer, energy audit, reliability, urban, semi-urban and rural setting”. 2010 LAP Lambert Academic Publ.
[31]Kothari, D. P., & I. J Nagrath. “Modern Power System Analysis”. 2003 Tata McGraw-Hill Education.
[32]Gellings, C. W., & J Chamberlin. “Demand-Side Management: Concepts and Methods”. 1988 Liburn, GA: Fairmont.
[33]Wang, K. P., L. Huang, C. G. Zhou, & W Pang. “Particle swarm optimization for traveling salesman problem”. 2003 International Conference on Machine Learning and Cybernetics, (Vol. 3, pp. 1583-1585).
[34]Hu, X., R. C. Eberhart, & Y Shi. “Swarm intelligence for permutation optimization: a case study of n-queens problem”. Proceedings of the 2003 IEEE in Swarm intelligence symposium, SIS''03. (pp. 243-246).
[35]Richards, M., & D Ventura. “Choosing a starting configuration for particle swarm optimization”. In 2004 IEEE Int. Joint. Conf. Neural (Vol. 3, pp. 2309-2312).
[36]Du, Q., V. Faber, & M Gunzburger. “Centroidal Voronoi tessellations: Applications and algorithms”. 1999 SIAM review, 41(4), pp. 637-676.
[37]Clifton, C., M. Kantarcioglu, J. Vaidya, X. Lin, & M. Y Zhu. “Tools for privacy preserving distributed data mining”. 2002 ACM Sigkdd Explorations Newsletter, 4(2), pp. 28-34.
[38]Huang, R., T. Huang, R. Gadh, & N Li. “Solar generation prediction using the ARMA model in a laboratory-level micro-grid”. 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), (pp. 528-533).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔