(44.192.112.123) 您好!臺灣時間:2021/03/04 06:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡釗仁
研究生(外文):Chao-Jen Tsai
論文名稱:數種強化同時壓縮與加密方法之技巧
論文名稱(外文):Some Techniques for Enhancing Joint Compression and Encryption Schemes
指導教授:吳家麟
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:29
中文關鍵詞:混沌加密壓縮混沌映射密碼學資料流同時壓縮與加密
外文關鍵詞:ChaosCompressionEncryptionChaotic mapStreamingSimultaneous compression and encryptionJoint compression and encryption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出三種強化同時壓縮與加密方法的技巧。這三種技巧分別改善現有方法之執行時間、壓縮效能及估計的準確度。第一種技巧利用輔助的資料結構顯著加速現有的基於混沌的同時壓縮與加密方法。第二種技巧藉由選取少數重要的子表格,解決使用多維表格時表格過大而影響壓縮效能的問題。第三種技巧以時間對資料流中之元素加權,藉以提高加密時使用之機率分佈估計模型的準確度。本文並提出以上述三種技巧為核心概念的兩種同時加密與壓縮的方法,分別應用在壓縮檔案及資料流上。實驗證明此兩種方法的壓縮效能以及執行時間都優於現有方法,也同時證實本文提出的三種技巧之實用性。
Three techniques for enhancing joint compression and encryption (JCAE) schemes are proposed. They respectively improve the execution time, compression performance and estimation accuracy of three different JCAE schemes. The first uses auxiliary data structures to significantly accelerate currently existing chaos-based join compression and encryption scheme. The second one solves the problem of huge multidimensional lookup table overheads by selecting a small number of important sub tables. The third increases the accuracy of frequency distribution estimations used for compressing streaming data by weighting symbols in the plaintext stream according to their position in the stream. Two joint compression and encryption schemes leveraging the above three techniques, one for static files and the other for streaming data, are proposed. Experiments results show that the proposed schemes run faster and generate smaller files than existing schemes, verifying that the three techniques are useful and practical.
口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Thesis organization 3
Chapter 2 Related Work 4
2.1 Look-up table and chaotic-map based approach 4
2.2 Dynamic updating look-up-table based approach 5
2.3 Number of distinct plaintext symbol based approach 5
2.4 Bi-gram based approach 5
2.5 Streaming approach 6
Chapter 3 Proposed Methods 7
3.1 A queue based non-relabeling scheme for lookup table updating 7
3.1.1 The timestamp table 8
3.1.2 The MPNS queue 8
3.1.3 The proposed scheme 8
3.1.4 Time Complexity analysis 9
3.2 A hybrid unigram and bigram context based lookup table selection mechanism 9
3.2.1 Hybrid bigram and unigram contexts 11
3.2.2 Bigram selection 11
3.3 An adaptive probability estimation modelling for streaming data 12
3.3.1 Retaining old information 13
3.3.2 Implementation 13
3.4 A static scheme 14
3.4.1 LUT creation 15
3.4.2 Chaos-based encryption 16
3.4.3 Huffman coding 16
3.4.4 Masking 17
3.5 A streaming scheme 17
3.5.1 Real-number LUTs’ issue 18
3.5.2 Context modelling 19
3.5.3 Bigram context selecting 20
3.5.4 The proposed procedure 21
Chapter 4 Performance and Security Analyses 22
4.1 Compression Ratio 22
4.2 Execution Time 23
4.3 Security Analysis 24
4.3.1 Key space 24
4.3.2 Key sensitivity 24
4.3.3 Plaintext sensitivity 25
Chapter 5 Conclusion 27
REFERENCE 28
[1]M. Grangetto, E. Magli and G. Olmo, "Multimedia Selective Encryption by Means of Randomized Arithmetic Coding", IEEE Transactions on Multimedia, vol. 8, no. 5, pp. 905-917, 2006.
[2]Jiangtao Wen, Hyungjin Kim and J. Villasenor, "Binary arithmetic coding with key-based interval splitting", IEEE Signal Processing Letters, vol. 13, no. 2, pp. 69-72, 2006.
[3]Chung-Ping Wu and C. Kuo, "Design of integrated multimedia compression and encryption systems", IEEE Transactions on Multimedia, vol. 7, no. 5, pp. 828-839, 2005.
[4]A. Pande, P. Mohapatra and J. Zambreno, "Securing Multimedia Content Using Joint Compression and Encryption", IEEE MultiMedia, vol. 20, no. 4, pp. 50-61, 2013.
[5]H. Kim, J. Wen and J. Villasenor, "Secure Arithmetic Coding", IEEE Transactions on Signal Processing, vol. 55, no. 5, pp. 2263-2272, 2007.
[6]M. S. Bapista, “Cryptography with chaos,” Phys. Lett. A, vol. 240, no. 1/2, pp. 50-54, Mar. 1998.
[7]K. W. Wong and C. H. Yuen, “Embedding compression in chaos-based cryptography,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 11, pp. 1193–1197, Nov. 2008.
[8]J. Chen, J. Zhou and K. W. Wong, “A modified chaos-based joint compression and encryption scheme,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 2, pp.110–114, 2011.
[9]O. Y. Lui, K. W. Wong, J. Chen and J. Zhou, “Chaos-based joint compression and encryption algorithm for generating variable length ciphertext,” Applied Soft Computing 12 (2012), pp. 125–132.
[10]Yu-Chen Lin and Ja-Ling Wu, “A novel chaos-based joint compression and encryption scheme using normalized conditional bi-gram probability,” Master Thesis, Graduate Institute of Computer Science and Information Engineering, National Taiwan University, 2016.
[11]Yu-Jung Chang and Ja-Ling Wu, “A chaos-based joint compression and encryption scheme for streaming data,” Master Thesis, Graduate Institute of Computer Science and Information Engineering, National Taiwan University, 2016.
[12]J. S. Vitter, “Design and analysis of dynamic Huffman codes,” Journal of the ACM, vol. 34, no. 4, pp. 825-845, 1987.
[13][Online]. Available: “http://www.data-compression.info/Corpora/SilesiaCorpus/”.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔