跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李坤樸
研究生(外文):Kun-Pu Lee
論文名稱:基於生物醫學文獻建構路徑重要性模型預測藥物新適應症
論文名稱(外文):Literature-based Discovery for Drug Repurposing: A Path-importance-based Approach
指導教授:魏志平魏志平引用關係
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:53
中文關鍵詞:舊藥新用語義關係監督式學習路徑重要性分類模型
外文關鍵詞:drug repurposingsemantic predicationsupervised learningpath importance classification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藥物開發成本高昂且費時,根據美國食品藥品管理局(FDA)規定,新藥物需通過候選藥物開發、臨床實驗、FDA審核等五大流程,最終才可以在市場中販售。然而,只要其中一個流程無法通過,此藥物開發就前功盡棄,投資者將承受巨大損失。因此,為了解決藥物開發的困難,許多研究人員開始尋求替代方法。「舊藥新用」透過既有藥物,尋找新適應症,能夠大幅降低藥物開發金錢、時間成本。
Swanson (1986)最先提出以醫學文獻探勘方式實現舊藥新用,然而,之後依據Swanson模型的研究碰到許多困難。因此,我們提出基於生物醫學文獻建構路徑重要性模型以預測藥物新適應症的方法。首先我們會以醫療語意關係建立語意網路,接著建置分類模型學習區分路徑重要性,最後依照分類模型結果對候選疾病進行排序,找出最有可能的藥物新適應症。
我們以實驗證明我們提出的路徑重要性分類模型有不錯的表現水準,並證明與傳統方法相比,融入區分路徑重要性模型能夠更有效找出潛在藥物新適應。
Drug development is costly and time-consuming. According to United States Food and Drug Administration (FDA), drug development consists of five stages, including drug discovery, clinical test, FDA review, etc. However, once one of the stages fails, the investment on candidate drug seldom returns. As a result, to overcome the challenges of drug development, researchers start to explore alternative methods for drug development. Drug repurposing discovery, finding new indications for existing drugs, has been proposed to help reduce cost and time needed for drug development.
Swanson (1986) originally proposed a drug repurposing approach that analyzes biomedical literatures to uncover implicit relationships. Previous studies following Swanson’s ABC model encountered several limitations. Therefore, in this research, we propose a path-importance-based approach, which constructs a concept network based on semantic predication, trains a classification model to determine the importance of paths that connecting a focal drug and a candidate disease, and finally ranks candidate diseases according to the importance of paths identified by the path importance classification model.
In our systematic evaluation experiments, we prove that our path importance classification model achieves a satisfactory effectiveness, and that adopting the concept of path importance into the ranking of candidate drugs for drug repurposing outperforms the traditional method.
誌謝 ii
中文摘要 iii
Abstract iv
Table of Contents vi
List of Figures ix
List of Tables x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation and Objective 4
Chapter 2 Literature Review 6
2.1 Literature-based Discovery 6
2.2 Ontology-based Discovery 10
Chapter 3 Method 13
3.1 Concept Network Construction 14
3.1.1 MeSH Terms Mapping and Filtering 15
3.2 Path Importance Classification 17
3.2.1 Feature Extraction 18
3.2.2 Classifier 23
3.3 Target Diseases Ranking 23
3.3.1 Important Path Count (IPC) + Sum_EPIP 24
3.3.2 Summation of Expected Probability of Important Path (Sum_EPIP) 24
Chapter 4 Evaluation of Path Importance Classification 25
4.1 Data Collection 25
4.2 Benchmark 27
4.2.1 Classifier Selection 28
4.3 Evaluation Results 29
4.3.1 Comparison with the Benchmark Method 29
4.3.2 Effect of Adding Predication Content-based Features into Our Method 30
4.3.3 Effects of Feature Selection 31
Chapter 5 Evaluation of Drug Repurposing Discovery 34
5.1 Evaluation Design 34
5.2 Results 39
5.2.1 Comparison with Benchmark 39
5.2.2 Comparison between Different Classifiers for Path Importance Classification 41
5.2.3 Effects of Different Kinds of Features 42
5.2.4 Effects of Target Disease Size 43
Chapter 6 Conclusion and Future Work 45
References 47
Appendix 52
Bleakley, K., & Yamanishi, Y. (2009). Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics, 25, 2397-2403.
Chang, Y. T. (2015). Computational drug repositioning: a learning to rank approach with multiple data sources. Unpublished Master Thesis, Department of Information Management, National Taiwan University, Taipei, Taiwan.
Chen, B., Ding, Y., & Wild, D. J. (2012). Assessing drug target association using semantic linked data. PLOS Computational Biology, 8(7), p. e1002574.
Chen, K. A. (2013). Mining biomedical literature and ontologies for drug repositioning discovery. Unpublished Master Thesis, Department of Information Management, National Taiwan University, Taipei, Taiwan.
Chiang, A., & Butte, A. (2009). Systematic evaluation of drug–disease relationships to identify leads for novel drug uses. Clinical Pharmacology & Therapeutics, 86(5), 507-510.
Cilibrasi, R. L., & Vitányi, P. M. (2007). The Google similarity distance. IEEE Transactions on Knowledge and Data Engineering, 19(3), 370-383.
Clinical Development Success Rates 2006-2015. (2016, 6). Retrieved from BIO Industry Analysis: https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf
Coulet, A., Shah, N. H., Garten, Y., Musen, M., & Altman, R. B. (2010). Using text to build semantic networks for pharmacogenomics. Journal of Biomedical Informatics, 43, 1009-1019.
Fukuda, K., Tamura, A., Tsunoda, A., & Takagi, T. (1998). Toward information extraction: identifying protein names from biological papers. Pacific Symposium on Biocomputing, 3, 705-716.
Ghofrani, H. A., Osterloh, I. H., & Grimminger, F. (2006). Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nature Reviews Drug Discovery, 5(8), 689-702.
Hristovski, D., Borut Peterlin, J. A., & Humphrey, S. M. (2005). Using literature-based discovery to identify disease candidate genes. International Journal of Medical Informatics, 74(2), 289-298.
Kazama, J., Makino, T., Ohta, Y., & Tsujii, J. (2002). Tuning support vector machines for biomedical named entity recognition. In Proceedings of the ACL Workshop on Natural Language Processing in the Biomedical Domain, Philadelphia, U. S. A., 1-8.
Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., & Rindflesch, T. C. (2012). SemMedDB: a PubMed-scale repository of biomedical semantic predications. Bioinformatics, 28(23), 3158-3160.
Mark, H. (1999). Correlation-based Feature Selection for Machine Learning. PhD Thesis, Department of Computer Science, Waikato University, Waikato, NZ.
Mei, J. P., Kwoh, C. K., Yang, P., Li, X. L., & Zheng, J. (2013). Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 29, 238-245.
Rastegar-Mojarad, M., Elayavilli, R. K., Wang, L., Prasad, R., & Liu, H. (2016). Prioritizing Adverse Drug Reaction and Drug Repositioning Candidates Generated by Literature-Based Discovery. Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, (289-296).
Rindflesch, T. C., & Fiszman, M. (2003). The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. Journal of Biomedical Informatics, 36(6), 462-477.
Song, M., Heo, G. E., & Ding, Y. (2015). SemPathFinder: semantic path analysis for discoveringpublicly unknown knowledge. Journal of Informetrics, 9(4), 686-703.
Swanson, D. R. (1986). Undiscovered public knowledge. The Library Quarterly, 103-118.
Swanson, D. R., & Smalheiser, N. R. (1997). An interactive system for finding complementary literatures: A stimulus to scientific discovery. Artificial Intelligence, 91(2), 183-203.
Weeber, M., Klein, H., de Jong-van den Berg, L. T., & Vos, R. (2001). Using concepts in literature-based discovery: Simulating Swanson''s Raynaud–fish oil and migraine–magnesium discoveries. Journal of the American Society for Information Science and Technology, 52(7), 548-557.
Wren, J. D., Bekeredjian, R., Stewart, J. A., Shohet, R. V., & Garner, H. R. (2004). Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics, 20(3), 389-398.
Wu, C., Ranga, C. G., Bruce, J. A., & Anil, G. J. (2013). Computational drug repositioning through heterogeneous network clustering. BMC Systems Biology, 7(Suppl S5), S6.
Xu, R., & Wang, Q. (2013). Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing. Bioinformatics, 14(1), p. 181.
Yang, Z. S. (2016). Literature-based discovery for drug repositioning: A semantic-based concept network approach. Unpublished Master Thesis, Department of Information Management, National Taiwan University, Taipei, Taiwan.
Yetisgen-Yildiz, M., & Pratt, W. (2009). A new evaluation methodology for literature-based discovery systems. Journal of Biomedical Informatics, 42(4), 633-643.
Zhang, P., Wang, F., & Hu, J. (2014). Towards drug repositioning: a unified computational framework for integrating multiple aspects of drug similarity and disease similarity. AMIA Annual Symposium proceedings, 1258-1267.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top