|
Bleakley, K., & Yamanishi, Y. (2009). Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics, 25, 2397-2403. Chang, Y. T. (2015). Computational drug repositioning: a learning to rank approach with multiple data sources. Unpublished Master Thesis, Department of Information Management, National Taiwan University, Taipei, Taiwan. Chen, B., Ding, Y., & Wild, D. J. (2012). Assessing drug target association using semantic linked data. PLOS Computational Biology, 8(7), p. e1002574. Chen, K. A. (2013). Mining biomedical literature and ontologies for drug repositioning discovery. Unpublished Master Thesis, Department of Information Management, National Taiwan University, Taipei, Taiwan. Chiang, A., & Butte, A. (2009). Systematic evaluation of drug–disease relationships to identify leads for novel drug uses. Clinical Pharmacology & Therapeutics, 86(5), 507-510. Cilibrasi, R. L., & Vitányi, P. M. (2007). The Google similarity distance. IEEE Transactions on Knowledge and Data Engineering, 19(3), 370-383. Clinical Development Success Rates 2006-2015. (2016, 6). Retrieved from BIO Industry Analysis: https://www.bio.org/sites/default/files/Clinical%20Development%20Success%20Rates%202006-2015%20-%20BIO,%20Biomedtracker,%20Amplion%202016.pdf Coulet, A., Shah, N. H., Garten, Y., Musen, M., & Altman, R. B. (2010). Using text to build semantic networks for pharmacogenomics. Journal of Biomedical Informatics, 43, 1009-1019. Fukuda, K., Tamura, A., Tsunoda, A., & Takagi, T. (1998). Toward information extraction: identifying protein names from biological papers. Pacific Symposium on Biocomputing, 3, 705-716. Ghofrani, H. A., Osterloh, I. H., & Grimminger, F. (2006). Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nature Reviews Drug Discovery, 5(8), 689-702. Hristovski, D., Borut Peterlin, J. A., & Humphrey, S. M. (2005). Using literature-based discovery to identify disease candidate genes. International Journal of Medical Informatics, 74(2), 289-298. Kazama, J., Makino, T., Ohta, Y., & Tsujii, J. (2002). Tuning support vector machines for biomedical named entity recognition. In Proceedings of the ACL Workshop on Natural Language Processing in the Biomedical Domain, Philadelphia, U. S. A., 1-8. Kilicoglu, H., Shin, D., Fiszman, M., Rosemblat, G., & Rindflesch, T. C. (2012). SemMedDB: a PubMed-scale repository of biomedical semantic predications. Bioinformatics, 28(23), 3158-3160. Mark, H. (1999). Correlation-based Feature Selection for Machine Learning. PhD Thesis, Department of Computer Science, Waikato University, Waikato, NZ. Mei, J. P., Kwoh, C. K., Yang, P., Li, X. L., & Zheng, J. (2013). Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 29, 238-245. Rastegar-Mojarad, M., Elayavilli, R. K., Wang, L., Prasad, R., & Liu, H. (2016). Prioritizing Adverse Drug Reaction and Drug Repositioning Candidates Generated by Literature-Based Discovery. Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, (289-296). Rindflesch, T. C., & Fiszman, M. (2003). The interaction of domain knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. Journal of Biomedical Informatics, 36(6), 462-477. Song, M., Heo, G. E., & Ding, Y. (2015). SemPathFinder: semantic path analysis for discoveringpublicly unknown knowledge. Journal of Informetrics, 9(4), 686-703. Swanson, D. R. (1986). Undiscovered public knowledge. The Library Quarterly, 103-118. Swanson, D. R., & Smalheiser, N. R. (1997). An interactive system for finding complementary literatures: A stimulus to scientific discovery. Artificial Intelligence, 91(2), 183-203. Weeber, M., Klein, H., de Jong-van den Berg, L. T., & Vos, R. (2001). Using concepts in literature-based discovery: Simulating Swanson''s Raynaud–fish oil and migraine–magnesium discoveries. Journal of the American Society for Information Science and Technology, 52(7), 548-557. Wren, J. D., Bekeredjian, R., Stewart, J. A., Shohet, R. V., & Garner, H. R. (2004). Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics, 20(3), 389-398. Wu, C., Ranga, C. G., Bruce, J. A., & Anil, G. J. (2013). Computational drug repositioning through heterogeneous network clustering. BMC Systems Biology, 7(Suppl S5), S6. Xu, R., & Wang, Q. (2013). Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing. Bioinformatics, 14(1), p. 181. Yang, Z. S. (2016). Literature-based discovery for drug repositioning: A semantic-based concept network approach. Unpublished Master Thesis, Department of Information Management, National Taiwan University, Taipei, Taiwan. Yetisgen-Yildiz, M., & Pratt, W. (2009). A new evaluation methodology for literature-based discovery systems. Journal of Biomedical Informatics, 42(4), 633-643. Zhang, P., Wang, F., & Hu, J. (2014). Towards drug repositioning: a unified computational framework for integrating multiple aspects of drug similarity and disease similarity. AMIA Annual Symposium proceedings, 1258-1267.
|