跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 11:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳秋中
研究生(外文):Chiu-Chong Chen
論文名稱:生醫研究資源群集判別
論文名稱(外文):Community detection for Biomedical Research Resources
指導教授:陳建錦陳建錦引用關係
指導教授(外文):Chien-Chin Chen
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:29
中文關鍵詞:網路分析學術網路群集辨識分群演算法群集驗證
外文關鍵詞:Network AnalysisScholar NetworkCommunities DetectionClusteringCluster Validation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主旨在於研究並利用智慧局部移動法(Smart Local Moving) 於生醫領域相關研究資源的群集尋找上,我們根據實際的平台資料先定義了一個網路模型,並利用點與點之間估計互信息(Estimating Mutual Information) 作為網路中節點間的邊之權重值。以這個模型我們建立了一個查找特定資源與最相關資源的服務。

此外根據這樣的模型我們利用SLM進行分群,並根據Dunn-Index與資料特性自定義了Coherence Index作為群集大小與數量的判別依據,最後以10-folds Cross-Validation進行實驗得出最佳的分群結果,供未來與相關領域專業人員,並進一步改良之討論依據。
A peculiar thing about biomedical researches is that they generally involve more than related past works and literature. Tools, softwares, databases and even samples are considered. Even though many online services have been developed to collect and share these resources. Still, they are too many for researchers to find desire information. For instance, SciCrunch, as one of largest online resource platform, contains more than 15,000 resources.

In this research, we present the analytic result for biomedical research resources in order to figure out meaningful groups of biomedical resources with community detection. We apply the Smart Local Moving algorithm to detect meaningful communities inside the network of resources.
Chapter 1. Introduction 1
Chapter 2. Related Works 3
2.1 Methods Applied for Scholar Research 3
2.2 Determining Number of Communities 5
2.3 Modularity-based Clustering 6
Chapter 3. Methodology 7
3.1 Problem Definition 7
3.2 Estimated Mutual Information for Edges Weights 7
3.3 Clustering Algorithm 10
Chapter 4. Experiment 13
4.1 Dataset 13
4.2 Metrics 14
4.2.1 Weighted Cross-Cluster Accuracy 15
4.2.2 Inverse-Purity 17
4.2.3 Coherence Index 18
4.3 Result 20
Chapter 5. Conclusion 25
Chapter 6. Reference 27
1.Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254.
2.Nascimento, M. A., Sander, J., & Pound, J. (2003). Analysis of SIGMOD''s co-authorship graph. ACM Sigmod record, 32(3), 8-10.
3.Allan, J., Aslam, J., Belkin, N., Buckley, C., Callan, J., Croft, B., ... & Hiemstra, D. (2003, April). Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval, University of Massachusetts Amherst, September 2002. In ACM SIGIR Forum(Vol. 37, No. 1, pp. 31-47). ACM.
4.Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information processing & management, 41(6), 1462-1480.
5.Tight, M. (2008). Higher education research as tribe, territory and/or community: A co-citation analysis. Higher Education, 55(5), 593-605.
6.Ding, Y. (2011). Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. Journal of informetrics, 5(1), 187-203.
7.Newman, M. E. (2004). Detecting community structure in networks. The European Physical Journal B-Condensed Matter and Complex Systems, 38(2), 321-330.
8.Smyth, P. (1996, August). Clustering Using Monte Carlo Cross-Validation. In Kdd (Vol. 1, pp. 26-133).
9.Roth, V., Lange, T., Braun, M., & Buhmann, J. (2002, July). A resampling approach to cluster validation. In International conference on computational statistics (Vol. 15, pp. 123-128).
10.Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of cybernetics, 4(1), 95-104.
11.Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE transactions on pattern analysis and machine intelligence, (2), 224-227.
12.Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411-423.
13.Salvador, S., & Chan, P. (2005). Learning states and rules for detecting anomalies in time series. Applied Intelligence, 23(3), 241-255.
14.Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23), 8577-8582.
15.Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10), P10008.
16.Waltman, L., & van Eck, N. J. (2013). A smart local moving algorithm for large-scale modularity-based community detection. The European Physical Journal B, 86(11), 471.
17.Church, K. W., & Hanks, P. (1990). Word association norms, mutual information, and lexicography. Computational linguistics, 16(1), 22-29.
18.Frénay, B., Doquire, G., & Verleysen, M. (2014). Estimating mutual information for feature selection in the presence of label noise. Computational Statistics & Data Analysis, 71, 832-848.
19.Zhao, Y., & Karypis, G. (2001). Criterion functions for document clustering: Experiments and analysis (Vol. 1, p. 40). Technical report.
20.Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1), 36-41.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top