|
1.Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254. 2.Nascimento, M. A., Sander, J., & Pound, J. (2003). Analysis of SIGMOD''s co-authorship graph. ACM Sigmod record, 32(3), 8-10. 3.Allan, J., Aslam, J., Belkin, N., Buckley, C., Callan, J., Croft, B., ... & Hiemstra, D. (2003, April). Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval, University of Massachusetts Amherst, September 2002. In ACM SIGIR Forum(Vol. 37, No. 1, pp. 31-47). ACM. 4.Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information processing & management, 41(6), 1462-1480. 5.Tight, M. (2008). Higher education research as tribe, territory and/or community: A co-citation analysis. Higher Education, 55(5), 593-605. 6.Ding, Y. (2011). Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. Journal of informetrics, 5(1), 187-203. 7.Newman, M. E. (2004). Detecting community structure in networks. The European Physical Journal B-Condensed Matter and Complex Systems, 38(2), 321-330. 8.Smyth, P. (1996, August). Clustering Using Monte Carlo Cross-Validation. In Kdd (Vol. 1, pp. 26-133). 9.Roth, V., Lange, T., Braun, M., & Buhmann, J. (2002, July). A resampling approach to cluster validation. In International conference on computational statistics (Vol. 15, pp. 123-128). 10.Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of cybernetics, 4(1), 95-104. 11.Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE transactions on pattern analysis and machine intelligence, (2), 224-227. 12.Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411-423. 13.Salvador, S., & Chan, P. (2005). Learning states and rules for detecting anomalies in time series. Applied Intelligence, 23(3), 241-255. 14.Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the national academy of sciences, 103(23), 8577-8582. 15.Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10), P10008. 16.Waltman, L., & van Eck, N. J. (2013). A smart local moving algorithm for large-scale modularity-based community detection. The European Physical Journal B, 86(11), 471. 17.Church, K. W., & Hanks, P. (1990). Word association norms, mutual information, and lexicography. Computational linguistics, 16(1), 22-29. 18.Frénay, B., Doquire, G., & Verleysen, M. (2014). Estimating mutual information for feature selection in the presence of label noise. Computational Statistics & Data Analysis, 71, 832-848. 19.Zhao, Y., & Karypis, G. (2001). Criterion functions for document clustering: Experiments and analysis (Vol. 1, p. 40). Technical report. 20.Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1), 36-41.
|