|
Aldrighetti E., Computationial hydraulic techniques for the Saint Venant Equations in arbitrary shaped geometry, Ph.D thesis, Department of Mathematics, University of Trento, 2007. Amicarelli A., Marongiu J.C., Leboeuf F., Leduc J. and Caro J., SPH truncation error in estimating a 3D function, Comput. Fluids 2011; 44:279-296. Ata R. and Soulaïmani A., A stabilized SPH method for inviscid shallow water flows, Int. J. Numer. Meth. Fluids 2005; 47:139-159. Bates P.D., Marks K.J. and Horrit M.S., Optimal use of high-resolution topographic data in flood inundation models. Hydrol. Process. 2003; 17:5237–5257. Benz W., Smooth particle hydrodynamics - a review. In Robert J. Buchler, editor, Proceedings of the NATO Advanced Research Workshop on The Numerical Modelling of Nonlinear Stellar Pulsations Problems and Prospects. Kluwer Academic Publishers, 1990. Beven K.J., Rainfall-Runoff Modelling: The Primer. John Wiley & Sons Ltd., Chichester, 2001. Bonet J. and Kulasegaram S., Correction and stabilization of smoothed particle hydrodynamics methods with applications in metal forming simulations, Int, J.Numer. Meth. Eng.2000; 47(6): 1189-1214. Bonet J., Kulasegaram S., Rodriguez-Paz M.X. and Profit M., Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Comput. Meth. Appl. Mech. Engrg. 2004; 193:1245-56. Bonet J. and Lok T-S L., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations, Comput. Methods Appl. Mech. Eng. 1999; 180:97-115. Borve S., Omang M. and Trulsen J., Regularized smoothed particle hydrodynamics: A new approach to simulating magnetohydrodynamics shocks, Astrophys J. 2001; 561(1): 82-93. Bourdarias C. and Berbi S., A finite volume scheme for model coupling free syrface and pressurised flows in pipes, J. Comput. Appl. Math.2007; 209:109-131. Bousso S., Daynou M. and Fuamba M., Numerical modeling of mixed flows in storm wate systems: critical review of literature, J. Hydraul. Eng. 2013; 139(4):385-396. Caia Li, Fengb J.H., Xiec W.X. and Zhoua J., Computations of steady and unsteady transport of pollutant in shallow water, Math Comput. Simulat. 2006; 71:31-43. Casulli V. and Stelling G.S., A semi-implicit numerical model for urban drainage systems, Int. J. Numer. Methods Fluids 2013; 73:600-614. Cea L., French J. and Vázquez-Cendón M.E., Numerical modelling of tidal flows in complex estuaries including turbulence: an unstructured finite volume solver and experimental validation, Int. J. Numer. Methods. Eng. 2006; 67(13):1909–1932. Cea L., Puertas J., and Vázquez-Cendón M.E., Depth averaged modelling of turbulent shallow water flow with wet–dry fronts,. Arch. Comput. Methods Eng. (ARCME) 2007;14 (3). Cea L., Garrido M. and Puertas J., Experimental validation of two-dimensional depth-averaged models for forecasting rainfall–runoff from precipitation data in urban areas, J. Hydrol. 2010; 382:88-102. Chahinian N., Moussa R., Andrieux P. and Voltz M., Comparison of infiltration models to simulate flood events at the field scale, J. Hydrol. 2005; 306:191-214. Chaniotis A.K., Poulikakos D. and Koumoutsakos P., Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. J. Comput. Phys. 2002; 180:67-90 Chang K.H., Kao H.M., and Chang T.J., Lagrangian modeling of particle concentration distribution in indoor environment with different kernel functions and particle search algorithms, Buildi.Environ.2012; 57:81-87. Chang T.J., Kao H.M. , Chang K.H., and Hsu M.H., Numerical Simulation of Shallow-Water Dam Break Flows in Open Channels Using Smoothed Particle Hydrodynamics, J. Hydrol. 2011; 408:78-90. Chang T.J. and Chang K.H., SPH modeling of one-dimensional nonrectangular and nonprismatic channel flows with open boundaries, J. Hydraul. Eng. 2013; 139(11):1142-1149. Chang T.J., Chang K.H., Kao H.M., and Chang Y.S., Comparison of a New Kernel Method and a Sampling Volume Method for Estimating Indoor Particulate Matter Concentration with Lagrangian Modeling, Build. Environ. 2012; 54: 20-28. Chang T.J., Chang Y.S. and Chang K.H., Modeling rainfall-runoff processes using smoothed particle hydrodynamics with mass-varied particles, J. Hydrol. 2016; 543: 749-758. Chang Y.S. and Chang T.J., SPH simulation of solute transport in flows with steep velocity and concentration gradients, Water 2017; 9: 132-149. Chen L. and Young M.H., Green-Ampt infiltration model for sloping surface, Water Resour. Res. 2006; 42, doi:10.1029/2005WR004468. Chow V.T., Maidment D., and Mays L., Applied Hydrology. McGraw-Hill, New York, 1988. Cleary P.W., Modeling Confined Multi-material Heat and Mass Flows Using SPH, Appl. Math Model.1998; 22:981-993. Cleary P.W. and Monaghan J.J., Conduction Modelling Using Smoothed Particle Hydrodynamics, J. Comp. Phys. 1999; 148:227-264. Colagrossi A., A meshless Lagrangian method for free-surface and interface flows with fragmentation, Dottorato di Ricerca in Meccanica ed Apploicata XVI CICLO PhD Thesis, Universtia di Roma, La Sapienza, 2004. Colagrossi A. and Landrini M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comp. Phys. 2003; 191:448-475. Costabile P., Costanzo C. and Macchione, F., A storm event watershed model for surface runoff based on 2D fully dynamic wave equations, Hydrol. Process 2013; 27:554-569. Delestre O., Cordier S., James F. and Darboux F., Simulation of rainwater overland-flow. In Proceedings of the 12th International Conference on Hyperbolic Problems, Proceedings of Symposia in Applied Mathematics, Amer. Msth: University of Maryland, College Park (USA). 2009; 67:537–546. Delestre O., Darboux F., James F., Lucas C., Laguerre C. and Cordier S., FullSWOF: A free software package for the simulation of shallow water flows, arXiv:1401.4125. de Leffe M., le Touzé D. and Alessandrini B., SPH modeling of shallow-water coastal flows, J. Hydraul. Res. Extra Issue 2010; 48:118-125. Dilts G.A., Moving least squares hydrodynamics: consistency and stability, Int. J. Numer. Methods 1999; 44:1115-1155. Esteves M., Faucher X., Galle S., and Vauclin M., Overland flow and infiltration modeling for small plots unsteady rain: numerical results versus observed values, J. Hydrol. 2000; 228:265-282. Fiedler F.R. and Ramirez J.A., A numerical method for simulating discontinuous shallow flow over an infiltrating surface, Int. J. Numer. Methods Fluids 2000; 32:219-240. Federico I., Marrone S., Colagrossi A., Aristodemo F. and Antuono M., Simulating 2D open-channel flows through an SPH model, Eur. J. Mech. B-Fluid 2012; 34:35-46. Ferrari A., Dumbser M., Toro E.F. and Armanini A., A new 3d parallel SPH scheme for free surface flows, Comput. Fluids 2009; 38(6):1203–1217. Freeze R.A., and Harlen R.L., Blueprint for a physically-based digitally simulated hydrological response model, J. Hydrol. 1969; 9:237–258. Fulk D.A. and Quinn D.W., An analysis of 1-D smoothed particle hydrodynamics kernels, J. Comput. Phys. 1996; 126(1):165-180. Gingold R.A. and Monaghan J.J., Smoothed Particle Hydrodynamics: Theory and Application to Non-spherical stars, Monthly Notices of the Royal Astronomical Society 1977; 181:375-389. Gingold R.A. and Monaghan J.J., Kernel estimate as a basis for general particle method in hydrodynamics, J. Comp. Phys. 1982; 46:429-453. Horrit M.S. and Bates P.D., Predicting floodplain inundation: raster-based modelling versus the finite-element approach, Hydrol. Process. 2001; 15:825–842. Howes D.A., Abrahams A.D. and Pitman, E.B.,. One- and two-dimensional modelling of overland flow in semiarid shrubland, jornada basin, new mexico, Hydrol. Process. 2006; 20:1027–1046. Hung W.C., A new SPH-SWE approach for modeling of lateral flows in open-channels, Mater Thesis, 2014. Hunter N.M., Bates P.D., Horritt M.S. and Wilson M.D., Simple spatiallydistributed models for predicting flood inundation: a review, Geomorphology 2007; 90: 208–225. Iwagaki Y., Fundamental studies on runoff analysis by characteristics. Disaster Prev. Res. Inst., Kyoto Univ., Kyoto, Japan, 1955, Bull 10:1-25. Jian W., Liang D., Shao S., Chen R.. and Liu, X., SPH study of the evolution of water–water interfaces in dam break flows, Nat. Hazards. 2015; 78(1):531-553. Kao H.M. and Chang T.J., Numerical modeling of dambreak-induced flood and inundation using smoothed particle hydrodynamics, J. Hydrol. 2012; 448-449:232-244. Kivva S.L. and Zheleznyak M.J., Two-dimensional modeling of rainfall runoff and sediment transport in small catchments areas, Int. J. Fluid Mech. Res. 2005; 32 (6):703–716. Liang D.F., Lin B.L. and Falconer R.A., Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme, Int. J. Numer. Meth. Fluids 2007; 53:811-826. Libersky L.D., Petschek A.G., Carney T.C., Hipp J.R. and Allahdadi F.A., High-strain Lagrangian hydrodynamics – a 3-dimensional SPH code for dynamic material response, J. Comput. Phys. 1993; 109(1):67-75. Liu G.R. and Liu M.B., Smoothed Particle Hydrodynamics, World Sciectific Publishing Co. Pte. Ltd, 2003. Liu Q.Q., Chen L., Li J.C. and Singh V.P., Two-dimensional kinetic wave model of overland-flow, J, Hydrol. 2004; 291:28-41. Lo E.Y.M. and Shao S., Simulation of near-shore solitary wave mechanics by an incompressible SPH method, Applied Ocean Research 2002; 24:275-286. Lucy L.B., Numerical approach to testing the fission hypothesis, Astronomical Journal 1977; 82:1013-1024. Macdonald I., Baines M.J., Nichols N.K., and Samuels P.G., Analytic benchmark solutions for open channel flows, J. Hydraul. Eng. 1997; 123: 1041-1045. Mein R.G. and Larson C.L., Modeling infiltration during a steady rain, Water Resour. Res. 1973; 9(2):384-394. Mignot E., Paquier A. and Haider S., Modeling floods in a dense urban area using 2D shallow water equations, J. Hydrol. 2006; 327 (1–2):186–199. Monaghan J.J., Why particle methods work (hydrodynamics), SIAM Journal on Scientific and Statistical Computing 1982; 3:422-433. Monaghan J.J., Particle methods for hydrodynamics, Computer Physics Report 1985; 3:71-124. Monaghan J.J., An introduction to SPH, Comput. Phys. Commun. 1988; 48:89-96. Monaghan J.J., On the problem of penetration in particle methods, J. Comp. Phys. 1989; 82:1-15. Monaghan J.J., Simulating free surface flows with SPH, J. Comp. Phys.1994; 110:399-406. Monaghan J.J., Heat condition with discontinuous conductivity, Applied Mathematics Reports and Preprints, Monash University, (95/18), 1995b. Monaghan J.J., SPH and Riemann solver, J. Comp. Phys. 1997; 136:298-307. Monaghan J.J., SPH compressible turbulence, Mon. Not. R. Astron. Soc. 2002; 335:843-852. Monaghan J.J., Smoothed Particle Hydrodynamics, Rep. Prog. Phy. 2005; 68:1703-1759. Monaghan J.J. and Gingold R.A., Shock simulation by the particle method of SPH, J. Comp. Phys.1983; 52:374-381. Monaghan J.J. and Kajtar J., SPH particle boundary forces for arbitrary boundaries., Comput. Phys. Commun. 2009; 180(10):1811–1820. Monaghan J.J. and Kos A., Solitary waves on a Cretan beach, J. Wtrwy. Port, Coastal and Ocean Engrg 1999; 125:145-154. Monaghan J.J., Kos A. and Issa N., Fluid motion generated by impact, J. Waterway Port Coastal Ocean Eng. 2004; 139:250-259. Monaghan J.J. and Kocharyan A., SPH simulation of multi-phase flow, Comput.Phys. Commun. 1995; 87:225-235. Monaghan J.J. and Lattanzio J.C., A refined method for astrophysical problems, Astron. Astrophys. 1985; 149:135-143 Morris J.P., Analysis of smoothed particle hydrodynamics with applications, Ph. D thesis, Monash University, 1996. Morris J.P., Zhu Y. and Fox P.J., Parallel simulation of pore-scale flow through porous media, Comput. Geotech.1999; 25:227-246. Mügler C., Planchon O., Patin J., Weill S., Silvera N., Richard P. and Mouche E., Comparison of roughness models to simulate overland flow and tracer transport experiments under simulated rainfall at plot scale, J. Hydrol. 2011; 402(1–2):25–40. Price D.J., Smoothed particle hydrodynamics and magnetohydrodynamics, J. Comput. Phys. 2012; 231(3):759-794. Price D.J. and Monaghan J.J., Smoothed particle magnetohydrodynamics: I. Algorithms and tests in one dimension, Mon. Not. R. Astron. Soc. 2004; 348:123-138. Pu J.H., Shao S., Huang Y. and Hussain K., Evaluations of SWEs and SPH numerical modelling techniques for dam break flows, Eng. Appl. Comp. Fluid 2013; 7(4): 544-563. Quinlan N.J., Basa M. and Lastiwka M., Truncation error in mesh-free particle methods, Int. J. Numer. Meth. Eng. 2006; 66(13): 2064-2085. Quirk J.J., A contribution to the great Riemann solver debate, Int. J. Numer. Methods Fluids 1994; 18:555-574. Randles P.W. and Libersky L.D., Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Method Appl. M 1996; 139:375-408. Rhoades C.E., A fast algorithm for calculating particle interactions in smooth particle hydrodynamics simulations, Comput. Phys. Commun. 1992; 70: 478-482. Rodriguez-Paz M.X. and Bonet J., A corrected smooth particle hydrodynamics formulation of the shallow-water equations, Comput. Struct. 2005; 83:1396-1410. Sanders B.F. and Bradford S.F., Network implementation of the two-component pressure approach for transient flow in storm sewers, J. Hydraul. Eng. 2011; 137(2): 158-172. Shao S. and Lo E.Y.M., Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Adv. Water Resour. 2003; 26(7):787-800. Singh J., Altinakar M.S. and Ding Y., Numerical modeling of rainfall-generated overland flow using shallow-water equations, J. Hydrol. Eng. 2014, doi:10.1061/(ASCE)HE.1943-5584.0001124. Soares-Frazão S., and Testa G., The Toce river test case: numerical results analysis. In: Proceedings of the 3rd CADAM Workshop, Milan, Italy, 1999. SPHERIC: David Le Touzé, rereieved July 5, 2012, from http://wiki.manchester.ac.uk/spheric. SPHysics: Robert A. Dalrymple, Moncho Gómez-Gesteira, Ben Rogers, Alejandro Crespo, Muthukumar Narayanaswamy, Shan Zou, Andrea Panizzo, rereieved July 5, 2012, from http://wiki.manchester.ac.uk/sphysics Swegle J.W., Hicks D.L. and Attaway S.W., Smoothed particle hydrodynamics stability analysis, J Comp. Phys. 1995; 116(1):123-134. Tatard L., Planchon O., Wainwright J., Nord G., Favis-Mortlock D., Silvera N., Ribolzi O., Esteves M. and Huang, C., Measurement and modelling of high-resolution flow-velocity data under simulated rainfall on a low-slope sandy soil, J. Hydrol. 2008; 348(1-2):1–12. Toro E.F., Shock Capturing Methods for Free Surface Shallow Water Flows,Wiley: New York, 1999. Vacondio R., Shallow Water and Navier-Stokes SPH-like numerical modelling of rapidly varying free-surface flows. Ph. D Thesis, 2010. Vacondio R., Rogers B.D. and Stansby P.K., Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing, Int. J. Numer. Meth. Fluids 2011; doi: 10.1002/fld.2646. Vacondio, R., Rogers, B.D., Stansby, P.K., Mignosa, P., SPH modeling of shallow flow with open boundaries for practical flood simulation, J. Hydraul. Eng. 2012a; 138(6): 530-541. Vacondio R., Rogers B.D. and Stansby P.K., Smoothed Particle Hydrodynamics: Approximated zero-consistent 2-D boundary conditions and still shallow-water tests, Int. J. Numer. Meth. Fluids 2012b; doi: 10.1002/fld.2559. Vasconcelos J.G and Marwell D.T.B., Innovative simulation of unsteady low-pressure flows in water mains, J. Hydraul. Eng. 2011; 137(11): 1490-1499. Vasconcelos J.G., Wright S.J. and Roe P.L., Current issues on modeling extreme inflows in stormwater systems, J. Water Man. Model2006a; R225-19, doi: 10.14796/JWMM.R225-19. Vasconcelos J.G., Wright S.J. and Roe P.L., Improved simulation of flow regime transition in sewers: two-component pressure approach, J. Hydraul. Eng. 2006b; 132(6):553-562. Vasconcelos J.G. and Wright S.J., Comparison between the two-component pressure approach and current transient flow solvers, J. Hydraul. Res. 2007; 45(2):178-187. Vieux B.E. and Gauer, N., Finite-element modeling of storm water runoff using GRASS GIS, Comput. Aided. Civ. Inf. 1994; 9:263-270. Vila J.P., On particle weighted methods and Smooth particle hydrodynamics, Math. Models Methods Appl. Sci. 1999; 9(2):161-209. Violeau D., Fluid Mechanics and the SPH Method: Theory and Applications. Oxford University Press, Oxford, 2012. Wang Z. and Shen H.T., Lagrangian simulation of one-dimensional dam-break flow, J. Hydraul. Eng., 1999; 125:1217-1220. Woolhiser D.A., Smith R.E. and Giraldez J.-V., Effects of spatial variability of saturated hydraulic conductivity on Hortonian overland flow, Water Resour. Res. 1996; 32(3):671-678. Zhang W.H. and Cundy T.W., Modeling of two-dimensional overland Flow, Water Resour. Res.1989; 25(9):2019-2035. Zhu Y., Fox P.J. and Morris J.P., A pore-scale numerical model for flow through porous media, Int. J. Numer. Anal. Met. 1999; 23:881-904.
|