跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊迎緋
研究生(外文):Ying-Fei Yang
論文名稱:奈米零價鐵/銀之生態毒性及對土壤環境衝擊之機率風險評估
論文名稱(外文):Ecotoxicity and probabilistic risk assessment for the impacts of Fe0/Ag nanoparticles on soil environment
指導教授:廖中明廖中明引用關係廖秀娟廖秀娟引用關係
指導教授(外文):Chung-Min LiaoVivian Hsiu-Chuan Liao
口試委員:劉振宇江漢全吳益群王應然
口試委員(外文):Chen-Wuing LiuHann-Chyuan ChiangYi-Chun WuYing-Jan Wang
口試日期:2017-04-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:204
中文關鍵詞:奈米生態毒理奈米零價鐵奈米銀秀麗隱桿線蟲毒理動力/動態模擬土壤生態系機率風險評估
外文關鍵詞:NanoecotoxicologyZero-valent iron nanoparticlesSilver nanoparticlesCaenorhabditis elegansToxicokinetic/toxicodynamic modelingSoil ecosystemsRisk assessment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
奈米科技之快速發展與廣泛應用帶給人類社會廣大之福祉。然而,由於奈米消費產品用量之日益增加,其在製造與丟棄過程中所排放至環境中之奈米物質,對於生態環境與人類健康潛在毒性之隱憂亦與日俱增。奈米生態毒理學為生態毒理學範疇之一,其欲探討之主題為奈米物質之危害與安全性。此篇論文欲探討兩種環境與人類生活常使用之奈米物質,其一為經常利用於環境復育用途之奈米零價鐵,在現地復育時所釋放之奈米零價鐵於土壤生態系所造成之生態毒性已造成許多環境上之隱憂。此外,論文所欲探討之另一奈米物質為奈米銀,由於其良好之抗菌特性,因而時常應用於多種消費產品當中。然而,奈米銀在廢水處理之過程中,亦可能因汙水處理廠所產生之汙泥於農業上之再利用,而再度將其釋放於環境中,因而在近幾年引發其對於生態環境之隱憂。
此篇論文使用秀麗隱桿線蟲為模式生物來評估奈米零價鐵與奈米銀之生態毒性,秀麗隱桿線蟲之研究可提供許多基礎毒理之資訊,從分子、細胞以至於生物體層級,亦可利用其探討生態毒理之效應。秀麗隱桿線蟲生長於於土壤當中,經常用於評估土壤孔隙水、土壤、底泥之生態毒性。因此,此篇論文利用秀麗隱桿線蟲之生物標記,可協助進行奈米零價鐵與奈米銀生態毒理於土壤環境之風險評估。
為探討奈米零價鐵於多重子代所造成之生殖毒性,本研究分別檢驗與比較三種鐵物種在秀麗隱桿線蟲中之毒性,此三種鐵物種分別為奈米零價鐵、奈米氧化鐵與鐵離子。研究結果顯示,三種鐵物種在24小時之環境濃度暴露之下,對秀麗隱桿線蟲之死亡率無顯著影響。然而在其生殖毒性測試下,奈米零價鐵、奈米氧化鐵與鐵離子在母代皆造成子代數目顯著下降與細胞內氧化壓力上升。此外,奈米零價鐵之生殖毒性可從親代傳遞至F1與F2子代,但至F3及F4子代時則恢復為正常狀態。研究結果亦證明奈米零價鐵對F0及F1子代具生物累積作用。本研究結果顯示奈米零價鐵可藉由母代氧化壓力之製造、鐵離子之毒性與鐵累積而引起秀麗隱桿線蟲多重子代之生殖毒性。
再者,由於至今在奈米零價鐵尚未有量化之風險評估研究,進而可能阻礙其在環境應用之發展。此篇論文因此利用秀麗隱桿線蟲之生物指標來評估生物體外部與內部之奈米零價鐵於土壤生態系所造成之風險。在距離環境復育廠址不同深度與距離之環境濃度下,其中奈米零價鐵於秀麗隱桿線蟲體外所造成之風險,於超越風險為0.5條件下,土壤上層所生長之秀麗隱桿線蟲不孕之風險為最高 (95% 信賴區間: 13.18 – 57.40%)。此外,以較嚴謹與較寬鬆之標準下,奈米零價鐵於現地復育時可被接受之使用濃度,在本研究中皆進行評估與建議。研究結果顯示在較嚴謹之濃度標準下 (1.02 mg L-1),各土壤層中之奈米零價鐵對秀麗隱桿線蟲所造成之風險商數皆大於1。
針對奈米零價鐵於秀麗隱桿線蟲體內之風險評估方面,此篇論文亦發展毒理動力/動態之研究法來預測及探討奈米零價鐵之生物累積濃度與生態毒性。利用秀麗隱桿線蟲之生物測定法與毒理動力/動態參數,與機率風險評估之模式了解奈米零價鐵於土壤生態系中生物體內所造成之生態危害。結果顯示,透過水與食物為媒介傳遞之奈米零價鐵之生物濃縮因子分別為46與5×10-3。針對抑制秀麗隱桿線蟲之生殖能力、運動能力與生長,所推估之奈米零價鐵之10%抑制濃度分別為1.26 (95% 信賴區間: 0.19 – 5.20), 3.84 (0.38 – 42), and 6.78 (2.58 – 21) μg g−1。結果亦指出97.5%位數之風險商數皆大於1,顯示慢性暴露下之奈米零價鐵對秀麗隱桿線蟲具潛在危害。
另一方面,為快速檢測及評估奈米銀在一般土壤及地下水汙泥處理過土壤之潛在風險,此篇研究亦利用秀麗隱桿線蟲之生物標記進行機率風險評估。依據不同奈米銀之特性與不同地理區域之奈米銀濃度預測奈米銀在土壤之環境風險。結果顯示,根據不同表面特性、粒徑與暴露時間下,奈米銀對於秀麗隱桿線蟲運動行為上之抑制效果亦有所不同。整體而言,在歐洲、美國與瑞士地區其地下水汙泥處理過之土壤,奈米銀所造成之風險皆非常低。然而,結果亦顯示在長時間之奈米銀製造與使用下,奈米銀很有可能對於一般土壤及地下水汙泥處理過之土壤造成長久之生態風險,尤其以26 nm 檸檬酸包覆之奈米銀之機率為最高。
因此,利用機率風險評估與秀麗隱桿線蟲生態指標所結合之研究方法,可篩檢與評估金屬奈米對生態之衝擊。此研究建議以秀麗隱桿線蟲為生物指標所預測出之土壤環境風險,可協助減緩金屬奈米對陸地生態環境所引發之毒性與危害。
The rapid development and widespread use of nanotechnology has brought much advancement in human societies. However, due to growing numbers of nanoparticle-based consumer products, concerns have been raised for their potential toxicity to ecosystems and human beings during production and disposals. Nanoecotoxicology is a new subcategory of ecotoxicology that explores knowledge of hazards and safety aspects of nanoparticles (NPs). This study investigated nanoecotoxicity of two NPs that are frequently employed in compartments of soil environments and human societies. One is zero-valent iron nanoparticles (Fe0NPs), the most prominent NPs in the field of environmental remediation. There is considerable concern over the potential ecotoxicity to soil ecosystems posed by Fe0NPs released from in situ remediation. The other one is silver (Ag) NPs, one of the most frequently used NPs applied in various consumer products for human beings because of its eminent antimicrobial properties. However, soil contamination caused by AgNPs-treated sludges from sewage treatment plants is of great public concerns in these years.
This study used the nematode Caenorhabditis elegans (C. elegans) as a model organism to evaluate nanoecotoxicity of Fe0NPs and AgNPs. Studies in C. elegans offer information about basic toxicology at molecular, cellular, and organismal levels as well as ecotoxicological effects. The C. elegans freely reside in soils, commonly applied in assessing ecological risks in ecosystems including pore water, soil, and sediments. C. elegans biomarker-based risk model developed in this study provides a new tool to assist nanoecotoxicological risk assessment of Fe0NPs and AgNPs in soil environments.
To explore multigenerational reproductive toxicity of Fe0NPs, toxicities of three iron species including Fe0NPs, nanoscale iron oxide (nFe3O4), and ferrous ion (Fe(II)aq) were examined and compared in C. elegans. Results showed that Fe0NPs, nFe3O4, and Fe(II)aq did not cause significant mortality after 24 h exposure in environmentally relevant concentrations. Bioassays of reproductive toxicity revealed that Fe0NPs, nFe3O4, and Fe(II)aq significantly decreased offsprings in parental generation (F0) in accompany with increased intracellular reactive oxygen species (ROS). Furthermore, the reproductive toxicity of Fe0NPs was transferrable from F0 to F1 and F2 generations, but then recovered in F3 and F4 generations. Further evidence showed that Fe0NPs were accumulated in F0 and F1 generations of C. elegans. Results implicated that environmentally relevant concentrations of Fe0NPs induce multigenerational reproductive toxicity by high production of ROS in F0 generation, toxicity of Fe(II)aq, and iron accumulations in C. elegans.
Moreover, due to a lack of quantitative risk assessment of Fe0NPs that has hampered the development of appropriate testing methods in environmental applications. Empirical approaches assessing external and internal Fe0NPs-associated soil ecosystem health risks were developed by using C. elegans-based biomarkers. For risk assessments of external Fe0NPs in C. elegans, the risk metrics of exceedance risk (ER) and risk quotient (RQ) of Fe0NPs in various depths and distances from remediation sites were predicted. Results showed that under 50% risk probability (ER = 0.5), upper soil layer had the highest infertility risk (95% confidence interval: 13.18 – 57.40%). The margins of safety and acceptable criteria for soil ecosystems health for using Fe0NPs in field scale applications were also recommended. Results showed that RQs are larger than 1 in all soil layers when setting a stricter threshold of ~1.02 mg L-1 of Fe0NPs.
For risk assessments of internal Fe0NPs in C. elegans, a toxicokinetic/toxicodynamic (TK/TD) approach was used to appraise bioaccumulation and nanoecotoxicity of Fe0NPs. Built on present C. elegans bioassay with estimated TK/TD parameters, probabilistic risk assessment schemes were used to assess potential ecological threats posed by environmentally relevant Fe0NPs in soil ecosystems. This study found that average bioconcentration factors in C. elegans exposed to waterborne and foodborne Fe0NPs were ~46 and ~5×10-3, respectively. The 10% inhibition concentrations for fertility, locomotion, and development, respectively, were 1.26 (95% CI: 0.19 – 5.20), 3.84 (0.38 – 42), and 6.78 (2.58 – 21) μg g−1. Furthermore, most predicted 97.5%-tiles of risk quotients were larger than 1, implicating that chronic ecological risk posed by Fe0NPs was alarming.
On the other hand, to rapidly screen and assess potential toxicity and risks of sewage sludge-released AgNPs in general and sludge-treated soils, a probabilistic risk assessment framework was conducted based on C. elegans-based bioassays. The soil environmental risks were estimated depending on characteristics of AgNPs and geographic regions. Results indicated that locomotion inhibition of C. elegans was depending on surface properties, diameter, and exposure time of AgNPs. The overall sewage sludge-released AgNPs-associated soil contamination risk was very low among Europe, U.S., and Switzerland. However, large production and widespread use of AgNPs are highly likely to pose a long-term ecotoxicity risk on general and sludge-treated soils, particularly for 26 nm citrate-coated AgNPs.
In conclusion, the approach of integrating probabilistic risk model and C. elegans-based ecological indicators provides an effective tool to screen and assess the impacts of metal NPs on soil environments. It is suggested that C. elegans as a proxy for estimating soil risk metrics can help develop methods of managements for mitigating the metal NPs-induced toxicity on terrestrial ecosystems.
口試委員審定書 I
謝誌 II
ABSTRACT VII
中文摘要 X
TABLE OF CONTENTS XIII
LIST OF TABLES XVIII
LIST OF FIGURES XXI
NOMENCLATURE XXVI
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. RESEARCH MOTIVATIONS AND OBJECTIVES 3
2.1. Motivations 3
2.2. Objectives 5
3.1. Nanotechnology in Human Life and Environment 6
3.2. Nanoecotoxicological Issues 7
3.3. Zero-valent Iron Nanoparticles (Fe0NPs) 8
3.3.1. Fe0 NPs in environmental remediation 8
3.3.2. Transport and fate of Fe0NPs in the environment 9
3.3.3. Implications of Fe0NPs toxicity ecosystems 10
3.4. Silver Nanoparticles (AgNPs) 12
3.4.1. AgNPs in human life 12
3.4.2. Transport and fate of AgNPs in the environment 13
3.4.3. Implication of AgNPs toxicity for human health and ecosystems 15
3.5. Model Organism 17
3.6. Mathematical Models 18
3.6.1. Toxicokinetic (TK) model 18
3.6.2. Toxicodynamic (TD) model 22
3.7. Probabilistic Risk Assessment (PRA) 26
CHAPTER 4. MATERIALS AND METHODS 28
4.1. Study Framework 28
4.2. Fe0NPs and AgNPs syntheses and characterizations 30
4.3. Preparation of dosing solutions of Fe0NPs and AgNPs 31
4.4. Metal analyses 32
4.5. C. elegans Culture Conditions 33
4.6. Fe0NPs Exposure Experiments 34
4.6.1. Acute mortality exposure bioassay 34
4.6.2. Reproductive assay in F0 generation 35
4.6.3. Reproductive assay in multigeneration 36
4.6.4. Acute accumulation bioassays in F0 and F1 generations 38
4.6.5. Uptake/depuration experiment 39
4.6.6. Internal ROS bioassay 41
4.6.7. Locomotive behavior bioassay 42
4.6.8. Development bioassay 43
4.7. AgNPs Exposure Experiments 44
4.7.1. Locomotive behavior bioassay 44
4.8. Mathematical Models 45
4.8.1. Toxicokinetic/Toxicodynamic (TK/TD) modeling of Fe0NPs 45
4.8.1.1. TK modeling 45
4.8.1.2. TD modeling 49
4.8.2. Risk modeling of Fe0NPs and AgNPs 50
4.8.2.1. Effect modeling 50
4.8.2.2. Predictive risk threshold modeling 51
4.9. Probabilistic Risk Model 52
4.10. Statistical Analyses 54
4.11. Uncertainty and Sensitivity Analyses 55
CHAPTER 5. RESULTS 56
5.1. Characterizations and Size Distributions of Synthesized Fe0NPs, Fe3O4 NPs, Fe(II)aq, and AgNPs 56
5.2. Toxicity Tests of Fe0NPs 61
5.2.1. Acute mortality of Fe0NPs, Fe3O4 NPs, and Fe(II)aq 61
5.2.2. Reproductive toxicity of waterborne Fe0NPs, Fe3O4 NPs, and Fe(II)aq in F0 generation 64
5.2.3. Reproductive toxicity of foodborne Fe0NPs in F0 generation 66
5.2.4. Induction of intracellular ROS in F0 generation 68
5.2.5. Reproductive toxicity in F1 generation 70
5.2.6. Bioaccumulation of Fe0NPs in F0 and F1 generation 72
5.2.7. Multigenerational reproductive toxicity of Fe0NPs 74
5.2.8. Induction of intracellular ROS in multigeneration 76
5.3. Infertility Risk Assessment of Fe0NPs 78
5.3.1. Ecological risk assessment process 78
5.3.2. Effect modeling 80
5.3.3. Predictive risk threshold modeling 84
5.3.4. Environmental relevant concentration determinaions 89
5.3.5. Risk characterization 93
5.4. TK/TD Assessment of Fe0NPs 96
5.4.1. TK analysis 96
5.4.2. TD analysis 104
5.4.3. Threshold estimation 108
5.4.4. Fe0NPs body burdens in worms 111
5.4.5. Risk estimates 112
5.5. Neuroxicity Tests of AgNPs in Different Sizes and Coatings 117
5.6. Neurotoxicity Risk Assessment of AgNPs in Different Sizes and Coatings 119
5.6.1. Problem formulation 119
5.6.2. Ecological risk assessment process 121
5.6.3. Effect analysis 123
5.6.4. Predictive risk threshold modeling 126
5.6.5. Environmental concentration of AgNPs 130
5.6.6. Risk characterization 133
CHAPTER 6. DISCUSSION 138
6.1. Multigenerational reproductive toxicity posed by Fe0NPs in C. elegans 138
6.1.1. Mortality of Fe0NPs, nFe3O4, and Fe(II)aq in C. elegans 138
6.1.2. Reproductive toxicity of Fe0NPs in F0 generation of C. elegans 140
6.1.3. Increase of intracellular ROS levels posed by Fe0NPs, nFe3O4, and Fe(II)aq exposure in F0 generation of C. elegans 141
6.1.4. Reproductive toxicity of Fe0NPs in F1 generation of C. elegans 142
6.1.5. Iron accumulations posed by Fe0NPs in F0 and F1 generations of C. elegans 143
6.1.6. Multigenerational reproductive toxicity of Fe0NPs in C. elegans 144
6.1.7. Association between ROS levels and multigenerational reproductive toxicity in C. elegans 146
6.2. Infertility Risk Assessment of Fe0NPs 147
6.2.1. Exposure and dose-response modeling 147
6.2.2. Predictive risk thresholds 150
6.2.3. Risk estimates 151
6.2.4. Limitations and implications 152
6.3. TK/TD Assessment of Fe0NPs 154
6.3.1. TK assessment in bacteria 154
6.3.2. TK/TD assessment in worms 155
6.3.3. Risk assessment 157
6.3.4. Limitations and implications 158 6.4. Neurotoxicity Risk Assessment of AgNPs 160
6.4.1.Environmental fate of AgNPs 160
6.4.2. Exposure and dose-response modeling 161
6.4.3. Threshold estimates and risk assessment 164
6.4.4. Limitations and implications 166
CHAPTER 7. CONCLUSIONS 168
CHAPTER 8. SUGGESTIONS FOR FUTURE RESEARCHES 171
BIBLIOGRAPHY 172
CURRICULUM VITAE 203
Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlater JJ, Hong Y. 2008. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology 233: 404–410.
Ahn JM, Eom HJ, Yang X, Meyer JN, Choi J. 2014. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 108: 343–352.
Aitken RJ, Chaudhry MQ, Boxall AB, Hull M. 2006. Manufacture and use of nanomaterials: current status in the UK and global trends. Occupational Medicine (London) 56: 300–306.
Albanese A, Tang PS, Chan WC. 2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering 14: 1–16.
Alda Alvarez O, Jager T, Redondo EM, Kammenga JE. 2006. Physiological modes of action of toxic chemicals in the nematode Acrobeloides nanus. Environmental Toxicology and Chemistry 25: 3230e3237.
Allen HE, Hall RH, Brisbin TD. 1980. Metal speciation. Effects on aquatic toxicity. Environmenatl Science & Technology 14: 441–443.
Andersen ME. 2003. Toxicokinetic modeling and its applications in chemical risk assessment. Toxicology Letters 138: 9–27.
Anderson CP, Leibold EA. 2014. Mechanisms of iron metabolism in Caenorhabditis elegans. Frontiers in Pharmacology 5: 113.
Andrássy I. 1956. Die Rauminhalts und Gewichtsbestimmung der Fadenwürmer (Nematoden), pp. 1–15. Acta Zool, Academy of Sciences, Hungary.
Angelstorf JS, Ahlf W, Kammer FV, Heise S. 2014. Impact of particle size and light exposure on the effects of TiO2 nanoparticles on Caenorhabditis elegans. Environmental Toxicology and Chemistry 33:2288–2296.
Arndt DA, Chen J, Moua M, Klaper RD. 2014. Multigeneration impacts on Daphnia magna of carbon nanomaterials with differing core structures and functionalizations. Environmental Toxicology and Chemistry 33: 541−547.
Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G. 2012. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291: 65–72.
ASTM, 2008. Standard Guide for Conducting Laboratory Soil Toxicity Tests with the Nematode Caenorhabditis elegans E-2172-01. West Conshohocken, PA.
Auffan M, Achouak W, Rose J, Roncato MA, Chanéac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY. 2008. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmenatl Science & Technology 42: 6730–6735.
Baki ME, Miresmaili SM, Pourentezari M, Amraii E, Yousefi V., Spenani HR, Talebi AR, Anvari M, Fazilati M, Fallah AA, Mangoli E. 2014. Effects of silver nano-particles on sperm parameters, number of Leydig cells and sex hormones in rats. International Journal of Reproductive BioMedicine 12: 139–144.
Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. 2009. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5: 1897–1910.
Barnes, RJ, van der Gast, CJ, Riba, O, Lehtovirta, LE, Prosser, JI, Dobson, PJ, Thompson, IP. 2010. The impact of zero-valent iron nanoparticles on a river water bacterial community. Journal of Hazardous Materials 184: 73–80.
Begum M, Sen PK. 2007. TK/TD dose-response modeling of toxicity. Environmetrics 18: 515−525.
Behra R, Krug H. 2008. Nanoecotoxicology: nanoparticles at large. Nature Nanotechnology 3: 253–254.
Benn TM, Westerhoff P. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environmenatl Science & Technology 42: 4133−4139.
Bernhardt ES, Colman BP, Hochella MF Jr, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L. 2010. An ecological perspective on nanomaterial impacts in the environment. Journal of Environmental Quality 39:1954–1965.
Bhol KC, Schechter PJ. 2005. Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. British Journal of Dermatology 152: 1235–1242.
Blaser SA, Scheringer M, Macleod M, Hungerbühler K. 2008. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Science of the Total Environment 390: 396–409.
Bone AJ, Matson CW, Colman BP, Yang X, Meyer JN, Di Giulio RT. 2015. Silver nanoparticle toxicity to Atlantic killifish (Fundulus heteroclitus) and Caenorhabditis elegans: a comparison of mesocosm, microcosm, and conventional laboratory studies. Environmental Toxicology and Chemistry 34: 275−282.
Borda MJ, Venkatakrishnan R, Gheorghiu F. 2009. Status of nZVI technology: lessons learned from North American and International implementations. In: Environmental Applications of Nanoscale and Microscale Reactive Metal Particles. American Chemical Society: Washington D.C. ACS Symposium Series. 1027: 219–332.
Boxall AB, Tiede K, Chaudhry Q. 2007. Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine (London, England) 2: 919–927.
Boyd WA, McBride SJ, Rice JR, Snyder DW, Freedman JH. 2010. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicology and Applied Pharmacology 245:153–159.
Braydich-Stolle L, Hussain S, Schlage, JJ, Hofmann MC. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences 88: 412–419.
Burmaster DE, Anderson PD. 1994. Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments. Risk Analysis 14: 477–481.
Bury NR, Grosell M. 2003. Waterborne iron acquisition by a freshwater teleost fish, zebrafish danio rerio. Journal of Experimental Biology 206: 3529–3535.
Cedergreen N, Holm PE, Marcussen H. 2013. The use of elements as a substitute for biomass in toxicokinetic studies in small organisms. Ecotoxicology 22: 1509–1515.
Chapman PM, Allen HE, Godtfredsen K, Zgraggen MN. 1996. Evaluation of bioaccumulation factors in regulating metals. Environmenatl Science & Technology 30: A448–A452.
Chen C, Unrine JM, Judy JD, Lewis RW, Guo J, McNear DH, Jr. Tsyusko OV. 2015. Toxicogenomic responses of the model legume Medicago truncatula to aged biosolids containing a mixture of nanomaterials (TiO₂, Ag, and ZnO) from a pilot wastewater treatment plant. Environmenatl Science & Technology 49: 8759−8768.
Chen PJ, Tan SW, Wu WL. 2012. Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Environmenatl Science & Technology 46: 8431–8439.
Chen PJ, Wu WL, Wu KC. 2013. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early lifestages of medaka fish. Water Research 47: 3899–3909.
Chou BYH, Liao CM*, Lin MC, Cheng HH. 2006. Toxicokinetics/toxicodynamics of arsenic for farmed juvenile milkfish Chanos chanos and human consumption risk in BFD-endemic area of Taiwan. Environment International 32: 552–560.
Clift MJ, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V. 2008. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicology and Applied Pharmacology 232: 418−427.
Coutris C, Joner EJ, Oughton DH. 2012. Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Science of the Total Environment 420: 327−333.
Contreras EQ, Cho M, Zhu H, Puppala HL, Escalera G, Zhong W, Colvin VL. 2013. Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure. Environmenatl Science & Technology 47:1148–1154.
Contreras EQ, Puppala HL, Escalera G, Zhong W, Colvin VL. 2014. Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. Environmental Toxicology and Chemistry 33: 2716−2723.
Crane RA, Scott, TB. 2012. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials 211–212: 112 – 125.
Cressman CP III, Williams PL. 1997. Reference toxicants for toxicity testing using Caenorhabditis elegans in aquatic media, pp. 518–532. Environmental toxicology and risk assessment: modeling and risk assessment, sixth vol. ASTM STP 1317, American Society for Testing and Materials, West Conshohocken, PA.
Crommentuijn T, Doodeman CJA, Doornekamp A, Van Der Pol JJ, Van Gestel CAM, Bedaux JJM. 1994. Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods. Environmental Toxicology and Chemistry 13:1781–1789.
Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, Tarabara VV. 2006. Stable colloidal dispersions of C60 fullerenes in water: Evidence for genotoxicity. Environmenatl Science & Technology 40: 7394–7401.
Djurišić AB, Leung YH, Ng AM, Xu XY, Lee PK, Degger N, Wu RS. 2015. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small 11: 26–44.
Donner E, Scheckel K, Sekine R, Popelka-Filcoff R, Bennett J, Brunetti G, Naidu R, McGrath S, Lombi E. 2015. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing. Environmental Pollution 205: 78−86.
Díez-Ortiz M, Giska I, Groot M, Borgman EM, Gestel CAM. 2010. Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei. Chemosphere 80: 1036–1043.
ECB (European Chemicals Bureau), 2003. Technical guidance document on risk assessment. European Chemicals Bureau, Institute for Health and Consumer protection, European Commission, Dublin.
El-Temsah YS, Joner EJ. 2012. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89(1): 76–82.
El-Temsah YS, Joner EJ. 2013. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92: 131–137.
Ellegaard-Jensen L, Jensen KA, Johansen A. 2012. Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans. Ecotoxicology and Environmental Safety 80: 216–223.
Elliott DW, Zhang WX. 2001. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmenatl Science & Technology 35: 4922–4926.
European Environment. 2014. A. Sewage sludge – a future waste problem? http://www.eea.europa.eu/data-and-maps/indicators/generation-and-treatment-of-sewage-sludge/sewage-sludge-a-futurewaste-problem. (accessed 20. 11. 15)
Fajardo C, Ortiz LT, Rodriguez-Membibre ML, Nande M, Lobo MC, Martin M. 2012. Assessing the impact of zero-valent iron (ZVi) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere 86: 802–808.
Feynman R. 1960. There’s plenty of room at the bottom (reprint from speech given at annual meeting of the American Physical Society). Engineering and Science 23: 22–36.
Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P. 2009. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environmental Health Perspectives 117: 703–708.
Freeman MN, Peredney CL, Williams PL. 2000. A soil bioassay using the nematode Caenorhabditis elegans. Environmental Toxicology and Risk Assessment: Standardization of Biomarkers for Endocrine Disruption and Environmental Assessment, Vol 8. STP 1364, pp. 305 – 318. American Society for Testing and Materials, West Conshohocken, PA.
Gandhi S, Santelli J, Mitchell DH, Stiles JW, Sanadi DR. 1980. A simple method for maintaining large, aging populations of Caenorhabditis elegans. Mechanisms of Ageing and Development 12: 137–150.
Garnier-Laplace J, Della-Vedova C, Gilbin R, Copplestone D, Hingston J, Ciffroy P. 2006. First derivation of predicted-no-effect values for freshwater and terrestrial ecosystems exposed to radioactive substances. Environmenatl Science & Technology 40: 6498–6505.
Gavaskar A, Tatar L, Condit W. 2005. Cost and performance report: nanoscale zero-valent iron technologies for source remediation. Naval Facilities Engineering Service Center: Port Hueneme, CA.
Geranio L, Heuberger M, Nowack B. 2009. The behavior of silver nanotextiles during washing. Environmenatl Science & Technology 43: 8113–8118.
Gesztelyi R, Zsuga J, Kemeny-Beke A, Varga B, Juhasz B, Tosaki A. 2012. The Hill equation and the origin of quantitative pharmacology. Archive for History of Exact Sciences 66: 427–438.
Gil-Díaz MM, Pérez-Sanz A, Vicente MÁ, Lobo MC. 2014. Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties. CLEAN – Soil, Air, Water 42: 1–9.
Giri J, Thakurta SG, Bellare J, Nigam AK, Bahadur D. 2005. Preparation and characterization of phospholipid stabilized (PC) uniform sized magnetite nanoparticles. Journal of Magnetism and Magnetic Materials 293: 62–68.
Gomes HI, Dias-Ferreira C, Ribeiro AB. 2013. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Science of the Total Environment 445–446: 237–260.
Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environmenatl Science & Technology 43: 9216–9222.
Goussen B, Beaudouin R, Dutilleul M, Buisset-Goussen A, Bonzom JM, Pery ARR. 2015. Energy-based modelling to assess effects of chemicals on Caenorhabditis elegans: a case study on uranium. Chemosphere 120: 507e514.
Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P. 2008. The Hill equation: a review of its capabilities in pharmacological modeling. Fundamental and Clinical Pharmacology 22: 633–648.
Graves AL, Boyd WA, Williams PL. 2005. Using transgenic Caenorhabditis elegans in soil toxicity testing. Archives of Environmental Contamination and Toxicology 48: 490–494.
Greer EL, Beese-Sims SE, Brookes E, Spadafora R, Zhu Y, Rothbart SB, Aristizábal-Corrales D, Chen S, Badeaux AI, Jin Q, Wang W, Strahl BD, Colaiácovo MP, Shi Y. 2014. A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Reports 7: 113–126.
Greish K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, Burckle A, Sadekar S, Yu T, Anwar A, Ray A, Ghandehari H. 2012. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology 6: 713–723.
Gruber J, Ng LF, Poovathingal SK, Halliwell B. 2009. Deceptively simple but simply deceptive--Caenorhabditis elegans lifespan studies: considerations for aging and antioxidant effects. FEBS Letters 583: 3377–3387.
Hagendorfer H, Lorenz C, Kaegi R, Sinnet G, Goet NV, Scheringer M, Ludwig C, Ulrich A. 2010. Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. Journal of Nanoparticle Research 12: 2481−2494.
Haitzer M, Höss S, Traunspurger W, Steinberg C. 1998. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms – a review. Chemosphere 37: 1335–1362.
Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17: 287–314.
He F and Zhao D. 2007. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulosestabilizers. Environmenatl Science & Technology 41: 6216–6221.
He F, Zhao D, Paul C. 2010. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research 44: 2360–2370.
Heard E, Martienssen RA. 2014. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157: 95–109.
Heckmann LH, Hovgaard M, Sutherland D, Autrup H, Besenbacher F, Scott-Fordsmand, J. 2011. Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20: 226–233.
Heinrich-Hirsch B, Madle S, Oberemm A, Gundert-Remy U. 2001. The use of toxicodynamics in risk assessment. Toxicology Letters 120: 131–141.
Henn KW and Waddill DW. 2006. Utilization of nanoscale zero-valent iron for source remediation—A case study. Remediation Journal16: 57–77.
Hill AV. 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Journal of Physiology 4: 4–7.
Hitchcock DR, Black MC, Williams PL. 1997. Investigations into using the nematode Caenorhabditis elegans for municipal and industrial wastewater toxicity testing. Archives of Environmental Contamination and Toxicology 33: 252–260.
Hodgkin J. The Nematode C. elegans, pp. 243 – 280. Cold Spring Harbor Laboratory Press, New York, 1998.
Holing CS. 1959. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Canadian Entomologist 91: 293–320.
Hu YO, Wang Y, Ye BP, Wang DY. 2008. Phenotypic and behavioral defects induced by iron exposure can be transferred to progeny in Caenorhabditis elegans. Biomedical and Environmental Sciences 21: 467–473.
Hu J, Wang D, Wang J, Wang J. 2012. Toxicity of lead on Ceriodaphnia dubia in the presence of nano-CeO2 and nano-TiO2. Chemosphere 89: 536–541.
Huang Y, Chen S, Bing X, Gao C, Wang T, Yuan B. 2011. Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packaging Technology and Science 24: 291–297.
Hunt PR, Marquis BJ, Tyner KM, Conklin S, Olejnik N, Nelson BC, Sprando RL. 2013. Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. Journal of Applied Toxicology 33: 1131–1142.
Iswarya V, Manivannan J, De A, Paul S, Roy R, Johnson JB, Kundu R. Chandrasekaran N, Mukherjee A, Mukherjee A. 2016. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environmental Science and Pollution Research 23: 4844–4458.
Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A. 2014. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9: e102108.
Jager T, Gudmundsdottir EM, Cedergreen N. 2014. Dynamic modeling of sublethal mixture toxicity in the nematode Caenorhabditis elegans. Environmenatl Science & Technology 48: 7026–7033.
Jang, MH, Lim, M, Hwang, YS. 2014. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environmental Health and Toxicology 29: e2014022.
Jiang JK, Oberdörster G, Biswas P. 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research 11: 77−89.
Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X, Damoiseaux R, Hoek EM. 2010. High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Environmenatl Science & Technology 44: 7321–7328.
Johnson RL, Thoms RB, O’Brien Johnson R, Nurmi JT, Tratnyek PG. 2008. Mineral precipitation upgradient from a zero-valent iron permeable reactive barrier. Groundwater Monitoring & Remediation 28: 56−64.
Johnson AC, Bowes MJ, Crossley A, Jarvie HP, Jurkschat K, Jürgens MD, Lawlor AJ, Park B, Rowland P, Spurgeon D, Svendsen C, Thompson IP, Barnes RJ, Williams RJ, Xu N. 2011. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Science of the Total Environment 409: 2503–2510.
Johnson RL, Nurmi JT, O''Brien Johnson GS, Fan D, O''Brien Johnson RL, Shi Z, Salter-Blanc AJ, Tratnyek PG, Lowry GV. 2013. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environmenatl Science & Technology 47: 1573−1580.
Kadar E, Tarran GA, Jha AN, Al-Subiai SN. 2011. Stabilization of engineered zero-valent nanoiron with Na-acrylic copolymer enhances spermiotoxicity. Environmenatl Science & Technology 45: 3245−3251.
Kadar E, Rooks P, Lakey C, White DA. 2012. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Science of the Total Environment 439: 8−17.
Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M. 2010. Release of silver nanoparticles from outdoor facades. Environmental Pollution 158: 2900−2905.
Kahru A, Dubourguier HC. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269: 105–119.
Kaletta T, Hengartner MO. 2006. Finding function in novel targets: C. elegans as a model organism. Nature Reviews Drug Discovery 5: 387−398.
Karn B, Kuiken T, Otto M. 2009. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental Health Perspectives 117: 1813–1831.
Karn B, Kuiken T, Otto M. 2011. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Ciência & Saúde Coletiva 16: 165−178.
Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL. 2009. Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmenatl Science & Technology 43: 4555−4560.
Keller AA, Garner K, Miller RJ, Lenihan HS. 2012. Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One 7: e43983.
Kim D, Andersen ME, Chao YC, Egeghy PP, Rappaport SM, Nylander-French LA. 2007. PBTK modeling demonstrates contribution of dermal and inhalation exposure components to end-exhaled breath concentrations of naphthalene. Environmental Health Perspectives 115: 894−901.
Kim B, Park C, Murayama M Jr, Hochella MF. 2010. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environmenatl Science & Technology 44: 7509−7514.
Kim HS, Ahn JY, Hwang KY, Kim IK, Hwang I. 2010. Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact: characteristics and reactivity. Environmental Science & Technology 44: 1760−1766.
Kim HJ, Phenrat T, Tilton RD, Lowry GV. 2012. Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. Journal of Colloid and Interface Science 370: 1−10.
Kim SW, Nam SH, An YJ. 2012. Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicology and Environmental Safety 77: 64−70.
Kim SW, Kwak JI, An YJ. 2013. Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure. Environmenatl Science & Technology 47: 5393−5399.
Kirschling TL, Gregory KB, Minkley EG., Jr, Lowry GV, Tilton RD. 2010. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmenatl Science & Technology 44: 3474−3480.
Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 27: 1825−1851.
Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R, 2011. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82: 1178−1184.
Kocur CM, Chowdhury AI, Sakulchaicharoen N, Boparai HK, Weber KP, Sharma P, Krol MM, Austrins L, Peace C, Sleep BE, O''Carroll DM. 2014. Characterization of nZVI mobility in a field scale test. Environmenatl Science & Technology 48: 2862–2869.
Kooijman SALM, Bedaux JJM. 1996. The analysis of aquatic toxicity data. VU University press, Amsterdam, The Netherlands.
Kouznetsova I, Bayer P, Ebert M, Finkel M. 2007. Modeling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging. Journal of Contaminant Hydrology 90: 58−80.
Kuiken T. 2010. Cleaning up contaminated waste sites: is nanotechnology the answer? Nanotoday 5: 6–8.
Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. 2011. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83: 1124–1132.
Lee J, Fortner JD, Hughes JB, Kim JH. 2007. Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation. Environmenatl Science & Technology 41: 2529 –2535.
Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XH. 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1: 133−143.
Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL. 2008. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmenatl Science & Technology 42: 4927–4933.
Lee YH, Cheng FY, Chiu HW, Tsai JC, Fang CY, Chen CW, Wang YJ. 2014. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35: 4706−4715.
Lester RR, Green LC, Linkov I. 2007. Site-specific applications of probabilistic health risk assessment: Review of the literature since 2000. Risk Analysis 27: 635–658.
Levard C, Michel FM, Wang Y, Choi Y, Eng P, Brown GE Jr. 2011a. Probing Ag nanoparticle surface oxidation in contact with (in)organics: an X-ray scattering and fluorescence yield approach. Journal of Synchrotron Radiation 18: 871−878.
Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE. 2011b. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environmenatl Science & Technology 45: 5260−5266.
Levard C, Hotze EM, Lowry GV, Brown GE Jr. 2012. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environmenatl Science & Technology 46: 6900−6914.
Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE Jr, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV. 2013. Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environmenatl Science & Technology 47: 13440–13448.
Li XQ, Elliott DW, and Zhang WX. 2006. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences 31: 111–122.
Li H, Zhou Q, Wu Y, Fu J, Wang T, Jiang G. 2009. Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety 72: 684–692.
Li Y, Yu S, Wu Q, Tang M, Pu Y, Wang D. 2012. Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. Journal of Hazardous Materials 219−220: 221−230.
Li Y, Zhang W, Niu J, Chen Y. 2012. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6: 5164–5173.
Liao CM, Liang HM, Chen BC, Singh S, Tsai JW, Chou YH. 2005. Dynamical coupling of PBPK/PD and AUC-based toxicity models for arsenic in tilapia Oreochromis mossambicus from blackfoot disease area in Taiwan. Environmental Pollution 135: 221−233.
Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Volpi Ghirardini A. 2016. Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicology and Environmental Safety 123: 81–88.
Liao CM, Chio CP, Chen WY, Ju YR, Li WH, Cheng YH, Liao VHC, Chen SC, Ling MP. 2011. Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: A preliminary probabilistic assessment. Journal of Hazardous Materials 190: 150–158.
Lim D, Roh JY, Eom H, Choi J, Hyun J, Choi J. 2012. Oxidative stress related PMK-1 P38 MAPK activation as a mechanism of toxicity of silver nanoparticles on the reproduction of the nematode Caenohabditis elegans. Environmental Toxicology and Chemistry 31: 585–592.
Liu J, Hurt RH. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environmenatl Science & Technology 44: 2169–2175.
Liu JY, Hurt RH. 2010a. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environmenatl Science & Technology 44: 2169−2175.
Liu JY, Sonshine DA, Shervani S, Hurt RH. 2010b. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4: 6903−6913.
Lombi E, Donner E, Taheri S, Tavakkoli E, Jämting AK, McClure S, Naidu R, Miller BW, Scheckel KG, Vasilev K. 2013. Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environmental Pollution 176: 193−197.
Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR. 2012. Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Environmenatl Science & Technology 46: 7027−7036.
Luo X, Xu S, Yang Y, Li L, Chen S, Xu A, Wu L. 2016. Insights into the Ecotoxicity of Silver Nanoparticles Transferred from Escherichia coli to Caenorhabditis elegans. Scientific Reports 6: 36465.
Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV. 2014. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environmenatl Science & Technology 48: 104−112.
Margerit A, Gomez E, Gilbin R. 2016. Dynamic energy-based modeling of uranium and cadmium joint toxicity to Caenorhabditis elegans. Chemosphere 146: 405–412.
Massarsky A, Trudeau VL, Moon TW. 2014. Predicting the environmental impact of nanosilver. Environmental Toxicology and Pharmacology 38: 861–873.
Maynard A, Michelson E. 2006. The Nanotechnology Consumer Products Inventory. Woodrow Wilson International Center for Scholars. http://www.nanotechproject.org/inventories/consumer/
Mckone TE. 1994. Uncertainty and variability in human exposures to soil contaminants through home-grown food: a Monte Carlo assessment. Risk Analysis 14: 449–463.
Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M. 2010. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquatic Toxicology 100: 140−150.
Mirsattari SM, Hammond RR, Sharpe MD, Leung FY, Young GB. 2004. Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology 62: 1408−1410.
Mitchell DH, Stiles JW, Santelli J, Sanadi DR. 1979. Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. The Journals of Gerontology 34: 28–36.
Miyamoton A, Tokumoto H, Konishi Y, Nomura T. 2012. Ecotoxicity of PSL nanoparticles to Escherichia coli. Journal of the Society of Powder Technology, Japan 49: 362–366.
Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC. 2010. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Letters 10: 3692–3699.
Moore DRJ, Sample BE, Suter GW, Parkhurst BR, Teed RS. 1999. A probabilistic risk assessment of the effects of methylmurcury and PCBS on mink and kingfishers along East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Environmental Toxicology and Chemistry 18: 2941−2953.
Morgan KL, Estevez AO, Mueller CL, Cacho-Valadez B, Miranda-Vizuete A, Szewczyk NJ, Estevez M. 2010. The glutaredoxin GLRX-21 functions to prevent selenium-induced oxidative stress in Caenorhabditis elegans. Toxicological Sciences 118: 530−543.
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. 2016. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346–2353.
Mueller NC, Nowack B. 2008. Exposure modeling of engineered nanoparticles in the environment. Environmenatl Science & Technology 42: 4447–4453.
Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby, Nowack B. 2012. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research 19: 550–558.
Myllynen K, Ojutkangas E, Nikinmaa M. 1997. River water with high iron concentration and low pH causes mortality of lamprey roe and newly hatched larvae. Ecotoxicology and Environmental Safety 36: 43–48.
Nanotech Project. 2016. Project on Emerging Nanotechnologies. Consumer Products Inventory. http://www.nanotechproject.org/inventories/consumer/analysis_draft/. (accessed 10. 3. 16)
Němeček J, Lhotský O, Cajthaml T. 2014. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Science of the Total Environment 485–486: 739–747.
Oberdörster G, Sharp Z, Atudore V, Elder A, Gelein R, Kreyling W, Cox C. 2004. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology 16: 437−445.
Oberdörster G. 2010. Concepts of nanotoxicology. NANOAGRI 1−9.
Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 113: 823−839.
O''Carroll, D, Sleep, B, Krol, M, Boparai, H, Kocur, C. 2013. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources 51: 104–122.
OECD. 2009. OECD Guidance Manual for the Testing of Manufactured Nanomaterials: OECD''s Sponsorship Program (July 9, 2009). Accessed from the website: http://search.oecd.org/officialdocuments/?hf=10&b=0&sl=official_documents&s=desc(document_lastmodifieddate)
Offermann K, Matthäi A, Ahlf W. 2009. Assessing the importance of dietborne cadmium and particle characteristics on bioavailability and bioaccumulation in the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry 28: 1149–1158.
Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L. 2011. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environmenatl Science & Technology 45: 4974−4979.
Park K, Tuttle G, Sinche F, Harpe SL. 2013. Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio). Archives of Pharmacal Research 36: 125−133.
Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA. 2013. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research 20: 1041−1049.
Peltier WH, Cornelius W. 1985. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. EPA/600/4-85/013. Environmental Monitoring and Support Laboratory, Cincinnati, OH.
Peredney CL, Williams PL. 2000. Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil. Archives of Environmental Contamination and Toxicology 39: 113–118.
Peuranen S, Vuorinen PJ, Vuorinen M, Hollender A. 1994. The effects of iron, humic acids and low ph on the gills and physiology of brown trout (Salmo trutta). Annales Zoologici Fennici 31: 389−396.
Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environmenatl Science & Technology 41: 284–290.
Phenrat T, Kim HJ, Fagerlund F, Illangasekare T, Tilton RD, Lowry GV. 2009. Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology 43: 5079−5085.
Phenrat T, Cihan A, Kim HJ, Mital M, Illangasekare T, Lowry GV. 2010. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: Effects of particle Fe0 content, and coatings. Environmenatl Science & Technology 44: 9086−9093.
Phillips DH, Van NT, Bastiaens L, Russell MI, Dickson K, Plant S, Ahad JME, Newton T, Elliot T, Kalin RM. 2010. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environmenatl Science & Technology 44: 386−389.
Platt HM. 1994. The phylogenetic systematics of free-living nematodes. The Ray Society, London.
Pradas Del Real AE, Castillo-Michel H, Kaegi R, Sinnet B, Magnin V, Findling N, Villanova J, Carrière M, Santaella C, Fernández-Martı́nez A, Levard C, Sarret G. 2016. Fate of Ag-NPs in sewage sludge after application on agricultural soils. Environmenatl Science & Technology 50: 1759–1768.
Pulido-Reyes G, Rodea-Palomares I, Das S, Sakthivel TS, Leganes F, Rosal R, Seal S, Fernández-Piñas F. 2015. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Scientific Reports 5: 15613.
Puliyel M, Mainous AG 3rd, Berdoukas V, Coates TD. 2015. Iron toxicity and its possible association with treatment of cancer: Lessons from hemoglobinopathies and rare, transfusion-dependent anemias. Free Radical Biology & Medicine 79: C343–C351.
Qu Y, Li W, Zhou Y, Liu X, Zhang L, Wang L, Li Y, Iida A, Tang Z, Zhao Y, Chai Z, Chen C. 2011. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Letters 11: 3174−3183.
Rainbow PS. 1991. Assessment of the Distribution, pp. 1–13. Impacts and bioaccumulation of contaminants in aquatic environments. Water Board and Australian Marine Sciences, Sydney.
Rasmussen K, González M, Kearns P, Sintes JR, Rossi F, Sayre P. 2016. Review of achievements of the OECD Working Party on Manufactured Nanomaterials'' Testing and Assessment Programme. From exploratory testing to test guidelines. Regulatory Toxicology and Pharmacology 74: 147−160.
Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J. 2009. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environmenatl Science & Technology 43: 3933−3940.
Saccà ML, Fajardo C, Costa G, Lobo C, Nande M, Martin M. 2014. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. Chemosphere 104: 184−189.
Sagee O, Dror I, Berkowitz B. 2012. Transport of silver nanoparticles (AgNPs) in soil. Chemosphere 88: 670–675.
Saleh N, Sirk K, Liu Y, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV. 2007. Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media. Environmental Engineering Science 24: 45−57.
Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV. 2008. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmenatl Science & Technology 42: 3349−3355.
Scheringer M. 2008. Nanoecotoxicology: Environmental risks of nanomaterials. Nature Nanotechnology 3: 322−323.
Schlich K, Klawonn T, Terytze K, Hund-Rinke K. 2013. Hazard assessment of a silver nanoparticle in soil applied via sewage sludge. Environmental Sciences Europe 25: 17.
Scown T, van Aerle R, Tyler C. 2010. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Critical Reviews in Toxicology 40: 653–670.
Seaton A, Tran L, Aitken R, Donaldson K. 2010. Nanoparticles, human health hazard and regulation. Journal of The Royal Society Interface 7 Suppl 1: S119–129.
Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. 2009. DNA damaging potential of zinc oxide nanoparticle in human epidermal cells. Toxicology Letters 185: 211–218.
Shoults-Wilson WA, Zhurbich OI, McNear DH, Tsyusko OV, Bertsch PM, Unrine JM. 2011. Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 20: 385–396.
Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D. 2009. Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3: 1357–1364.
Sileikaite A, Pusio J, Prosycevasi I, Tamulevicius S. 2009. Investigation of silver nanoparticles formation kinetics during reduction of silver nitrate with sodium citrate. Materials Science 15: 21–27.
Smith RL. 1994. Use of Monte Carlo simulation for human exposure assessment at a superfund site. Risk Analysis 12: 433–439.
Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C, Mulfinger L. 2007. Synthesis and study of silver nanoparticles. Journal of Chemical Education 84: 322–325.
Spann N, Goedkoop W, Traunspurger W. 2015. Phenanthrene bioaccumulation in the nematode Caenorhabditis elegans. Environmenatl Science & Technology 49: 1842–1850.
Spurgeon DJ, Hopkin SP. 1996. Effects of variations in the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia 40: 80–96.
Spurgeon DJ, Lister L, Kille P, Pereira MG, Wright J, Svendsen C. 2011. Toxicokinetic studies reveal variability in earthworm pollutant handling. Pedobiologia 54: S217–S222.
Stefan M, Hritcu L, Mihasan M, Pricop D, Gostin I, Olariu RI, Dunca S, Melnig V. 2011. Enhanced antibacterial effect of silver nanoparticles obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media. Journal of Materials Science: Materials in Medicine 22: 789–796.
Stookey L. 1970. Two new spectrophotometric reagents for copper. Talanta 17: 644–647.
Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ. 2008. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhalation Toxicology 20: 567–574.
Swain S, Wren JF, Stürzenbaum SR, Kille P, Morgan AJ, Jager T, Jonker MJ, Hankard PK, Svendsen C, Owen J, Hedley BA, Blaxter M, Spurgeon DJ. 2010. Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans. BMC Systems Biology: 4: 32.
Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J. 2001. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives 109: 547–551.
Taylor U, Barchanski A, Kues W, Barcikowski S, Rath D. 2012. Impact of metal nanoparticles on germ cell viability and functionality. Reproduction in Domestic Animals 47: 359–368.
Thalmann B, Voegelin A, Sinnet B, Morgenroth E, Kaegi R. 2014. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environmenatl Science & Technology 48: 4885−4892.
Tourinho PS, van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S. 2012. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environmental Toxicology and Chemistry 31: 1679–1692.
Tourinho PS, van Gestel CA, Morgan AJ, Kille P, Svendsen C, Jurkschat K, Mosselmans JF, Soares AM, Loureiro S. 2016. Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO3 via soil and food. Ecotoxicology 25: 267–278.
Tratnyek PG, Johnson RL. 2006. Nanotechnologies for environmental cleanup. Nanotoday 1: 44−48.
Tsai JW, Chen WY, Ju YR, Liao CM*. 2009. Bioavailability links mode of action can improve long-term field risk assessment for tilapia exposed to arsenic. Environment International 35: 727–736.
Tsalik EL, Hobert O. 2003. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of Neurobiology 56: 178–197.
USEPA (United States Environmental Protection Agency), 1992. Framework for ecological risk assessment. EPA–630–R–92–001. United States Environmental Protection Agency, Washington, D.C. http://www.epa.gov/sites/production/files/2014-11/documents/framework_eco_assessment.pdf
USEPA (United States Environmental Protection Agency), 1995. A guide to the biosolids risk assessments for the EPA Part 503 Rule. United States Environmental Protection Agency, Washington, DC.
USEPA (United States Environmental Protection Agency), 2003. Draft update of ambient water quality criteria for copper. EPA-822-R-03-026. Office of water, Washington, DC.
Van Gestel CAM, Van Dis WA. 1988. The influence of soil characteristics on the toxicity of four chemicals to the earthworm Eisenia fetida (Oligochaeta). Biology and Fertility of Soils 6: 262–265.
Verschoor MJ, Molot LA. 2013. A comparison of three colorimetric methods of ferrous and total reactive iron measurement in freshwaters. Limnology And Oceanography-Methods 11: 113–125.
Voelker D, Schlich K, Hohndorf L, Koch W, Kuehnen U, Polleichtner C, Kussatz C, Hund-Rinke K. 2015. Approach on environmental risk assessment of nanosilver released from textiles. Environmental Research 140: 661–672.
Wall DH, Nielesn UN, Six J. 2005. Soil diversity and human health. Nature 528: 69–76.
Walser T, Limbach LK, Brogioli R, Erismann E, Flamigni L, Hattendorf B, Juchli M, Krumeich F, Ludwig C, Prikopsky K, Rossier M, Saner D, Sigg A, Hellweg S, Günther D, Stark WJ. 2012. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nature Nanotechnology 7: 520–524.
Wang CB, Zhang WX. 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmenatl Science & Technology 31: 2154–2156.
Wang D, Xing X. 2008. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. Journal of Environmental Sciences (China) 20: 1132–1137.
Wang H, Wick RL, Xing B. 2009. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution 157: 1171−1177.
Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D. 2016. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environmental Pollution 210: 338–345.
Wei YT, Wu SC, Chou CM, Che CH, Tsai SM, Lien HL. 2010. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Research 44: 131–140.
Wei YT, Wu SC, Yang SW, Che CH, Lien HL, Huang DH. 2012. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1, 2-dichloroethane. Journal of Hazardous Materials 211–212: 373–380.
Whitley AR, Levard C, Oostveen E, Bertsch PM, Matocha CJ, von der Kammer F, Unrine JM. 2013. Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. Environmental Pollution 182: 141–149.
Whiteley CM, Dalla Valle M, Jones KC, Sweetman AJ. 2013. Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment. Environmental Science: Processes & Impacts 15: 2050–2058.
Wren JF, Kille P, Spurgeon DJ, Swain S, Sturzenbaum SR, Jager T. 2011. Application of physiologically based modelling and transcriptomics to probe the systems toxicology of aldicarb for Caenorhabditis elegans (Maupas 1900). Ecotoxicology 20: 397e408.
Wu Q, Zhao Y, Li Y, Wang D. 2014. Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomedicine 10: 1263–1271.
Xiu ZM, Ma J, Alvarez PJ. 2011. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environmenatl Science & Technology 45: 9003–9008.
Yamamoto Y, 1975. Stages in development. In Medaka (Killifish): Biology and Strains, pp. 30−58. Keigaku Publishing Company, Tokyo.
Yan D, Yin G, Huang Z, Li L, Liao X, Chen X, Yao Y, Hao B. 2011. Cellular compatibility of biomineralized ZnO nanoparticles based on prokaryotic and eukaryotic systems. Langmuir 27: 13206–13211.
Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN. 2012. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environmenatl Science & Technology 46: 1119–1127.
Yang YF, Chen PJ, Liao VH. 2016. Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicity in Caenorhabditis elegans. Chemosphere 150: 615–623.
Yeates GW, Bongers T. 1999. Nematode diversity in agroecosystems. Agriculture, Ecosystems & Environment 74: 113–135.
Yirsaw BD, Mayilswami S, Megharaj M, Chen Z, Naidu R. 2016. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types. Environmental Science and Pollution Research 23: 9822–9831.
Yu ZY, Zhang J, Yin DQ. 2010. Toxic and recovery effects of copper on Caenorhabditis elegans by various food-borne and water-borne pathways. Chemosphere 87: 1361–1367.
Zhang WX. 2003. Nanoscale Iron Particles for Environmental Remediation: An Overview. Journal of Nanoparticle Research 5: 323–332.
Zhang X, Lin S, Chen Z, Megharaj M, Naidu R. 2011. Kaolinite supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Research 45: 3481–3488.
Zhang Y, Chen D, Smith MA, Zhang, B, Pan, X. 2012. Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity. PLoS One 7: e31849.
Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. 2012. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guerin. Journal of Nanobiotechnology 10: 19.
Zhao Y, Wu Q, Li Y, Nouara A, Jia R, Wang D. 2014. In vivo translocation and toxicity of multi-walled carbon nanotubes are regulated by microRNAs. Nanoscale 6: 4275–4284.
Zuckerman BM. 1980. Achievement of age synchrony in Caenorhabditis elegans. Journal of Gerontology 35: 282–283.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top