跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/14 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁凱任
研究生(外文):Kai-Jen Liang
論文名稱:核醣體蛋白Rpl43的功能探討及和Puf6、Loc1的結合位分析
論文名稱(外文):Functional study of ribosomal protein Rpl43 and characterization of its interaction domains among Puf6 and Loc1
指導教授:羅凱尹
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:核醣體生合成核醣體蛋白Rpl43Puf6Loc1RNA成熟
外文關鍵詞:Ribosome biogenesisRibosomal proteinsRpl43Puf6Loc1RNA maturation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
酵母菌常常是我們用來研究其核醣體生合成途徑的模式生物。核醣體蛋白的表現量很高,含高正電及很多非結構區,因此,需要透過嚴謹的調控和回饋機制及伴護子系統,來控制蛋白質的合成量及穩定性。核醣體蛋白Rpl43p結合於核醣體上靠近E-site附近,以往的研究中並沒有深入其功能探究。而在實驗室的先前研究中,發現Rpl43p為puf6Δ的高通量抑制子,但卻不能抑制loc1Δ的生長缺失。但細胞失去Puf6p或Loc1p時,細胞中的Rpl43p量皆會下降,顯示Puf6p和Loc1p的功能和Rpl43p的穩定性及組裝上60S核醣體相關,可能為Rpl43p之伴護蛋白,但是功能上可能有差異性。
在本篇研究中,進一步分析三者間的關係。首先在核醣體rRNA的生合成方面,發現了在Puf6p、Loc1p缺乏的情形之下會產生和Rpl43p缺乏的情形相似。但藉由和運輸蛋白的結合測試以及螢光觀測Rpl43p的細胞位置分布結果,推測Puf6p、Loc1p對於核醣體的影響並非藉由改變Rpl43p在細胞中的分布所造成。進一步檢測RPL43的mRNA含量發現,RPL43成熟的mRNA量會隨著Puf6p、Loc1p的缺乏而降低,未成熟的non-splicing mRNA上升,尤其在Loc1p缺失中特別明顯。而這個缺失的現象其實並不僅僅針對Rpl43,在這個E-site周遭的Rpl2同時也會受其影響,但對其他的核醣體蛋白基因並無影響,因此,Puf6p、Loc1p可能可以專一性的影響RPL43 mRNA的成熟。本研究中也透過各種突變株的選殖建構,分析Rpl43p、Puf6p、Loc1p三者的結合關係。發現了Puf6p是藉由PUF其上的區塊和Rpl43p、Loc1p進行結合,Rpl43p則是藉由N端和Loc1p進行結合;Loc1p則是以N端和Puf6p以及Loc1p結合。
Saccharomyces cerevisiae (budding yeast) is a very common model used in ribosome biogenesis study. Ribosomal proteins are highly expressed. They are tentative to aggregate because of positive charges and unstructured domains. In order to build up a normal-functional ribosome, the qualities of ribosomal proteins need to be rigorously controlled. The regulation and feedback mechanism of these proteins are essential for normal cell growth and viability. Ribosomal protein Large subunit 43 (Rpl43p) is located nearby the E-site of ribosome. The functional domains and characteristic of Rpl43p is not fully identified. In our previous study, we found that Rpl43p is a high copy suppressor of puf6Δ but not loc1Δ. In the absence of PUF6 or LOC1, the level of Rpl43 protein decreased. The data suggests that the functions of Puf6p and Loc1p may correlate with the stability and assembly of Rpl43p with ribosome, but there are differences in between.
In this study, I would like to further dissect the connections among these three proteins. The processing defects of pre-ribosomal RNA in the puf6Δ and loc1Δ is similar to the mutant with depletion of Rpl43p. The results from the in vitro interaction assay with karyopherins and protein distribution of Rpl43 observed by fluorescence microscope suggested that Puf6p and Loc1p are not required for import of Rpl43p. While mature RPL43 mRNA decreased in the puf6Δ and loc1Δ, non-splicing mRNA increased, especially in loc1Δ. This phenomenon is also observed in RPL2, another protein in adjunction with Rpl43 around the E-site. However, Puf6 and Loc1 did not impact the RNA levels of other ribosomal protein genes. Therefore, Puf6 and Loc1 might be required for maturation of RPL43 mRNA. To further dissect the molecular function of each protein and analyze the interaction among Rpl43p, Puf6p and Loc1p, several mutants were constructed. I found that the interaction site of Puf6 to Rpl43p and Loc1p is mainly contributed by its PUF domain; the interaction site of Rpl43p to Loc1p is contributed by its N helix; the N terminal of Loc1p is important for Puf6p and Rpl43p to interaction.
目錄
摘要 iii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 x
一、文獻回顧與探討 1
1.1核醣體簡介 1
1.2 rRNA的成熟過程 1
1.3 核醣體生合成 2
1.3.1 40S生合成 3
1.3.2 60S生合成 3
1.4細胞核內外運輸的調控 4
1.5伴護蛋白 5
1.6和本實驗相關的因子 6
1.6.1 Puf6 6
1.6.2 Loc1 6
1.6.3 Rpl43 7
二、研究動機 8
三、研究材料方法 9
3.1 電泳 9
3.2 DNA電泳膠體純化 9
3.3 限制酶切割 9
3.4 接合作用 9
3.5 突變株的建構 9
3.6 大腸桿菌轉型 10
3.7 蛋白質大量表現以及純化 10
3.8 啤酒酵母轉型化 10
3.9 螢光顯微鏡觀察 11
3.10 生長測試 11
3.11 核醣體圖譜分析法 (polysome profile) 11
3.12 RNA免疫沉澱法 (RNA immuno-precipitation) 12
3.13 DNase處理 12
3.14 反轉錄RNA 12
3.15 qPCR之定量 13
3.16 免疫沉澱 (immuno-precipitation) 13
3.17 胞外結合測試 (In vitro interaction) 13
3.18 酵母菌RNA萃取 14
3.19 北方墨點法分析 15
3.20 ICP 質譜分析 16
四、結果 17
4.1 Rpl43p、Puf6、Loc1p 對於 rRNA 的生合成途徑影響相似 17
4.2 Rpl43p 可以獨立依靠 Kap 蛋白質入核,並且其結合 Kap 蛋白質必須倚靠其 N 端的入核序列以及 helix 結構 18
4.3 Puf6p、Loc1p 影響特異性的影響 RPL43 mRNA 的成熟表現含量 20
4.4 Puf6p、Loc1p 和 Rpl2 的相關性 23
4.5 Puf6、Loc1、Rpl43 三者在 60S 核醣體的結合上先後順序的關聯 24
4.6 Rpl43 蛋白質分析 25
4.6.1 Rpl43 為一個保守性高、與 Zn 結合的核醣體蛋白 25
4.6.2 Rpl43 突變株分析 26
4.7 Puf6p 蛋白質結合位分析 28
4.8 Loc1p 蛋白質結合位分析 29
五、討論 30
5.1於RPL43、PUF6、LOC1的突變株中分析rRNA生合成的裁切情形 30
5.2 Rpl43的入核不依賴Puf6p以及Loc1p 30
5.3 Puf6和Loc1p會影響RPL43 mRNA的含量 31
5.4 Rpl2和Rpl43間的相關性探討 32
5.5 Rpl43p、Puf6p、Loc1p三者關係的探討 32
六、結論 34
七、參考文獻 35
Ban, N., R. Beckmann, J.H. Cate, J.D. Dinman, F. Dragon, S.R. Ellis, D.L. Lafontaine, L. Lindahl, A. Liljas, J.M. Lipton, M.A. McAlear, P.B. Moore, H.F. Noller, J. Ortega, V.G. Panse, V. Ramakrishnan, C.M. Spahn, T.A. Steitz, M. Tchorzewski, D. Tollervey, A.J. Warren, J.R. Williamson, D. Wilson, A. Yonath, and M. Yusupov. 2014. A new system for naming ribosomal proteins. Curr Opin Struct Biol. 24:165-169.
Bassler, J., P. Grandi, O. Gadal, T. Lessmann, E. Petfalski, D. Tollervey, J. Lechner, and E. Hurt. 2001. Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol Cell. 8:517-529.
Ben-Shem, A., N. Garreau de Loubresse, S. Melnikov, L. Jenner, G. Yusupova, and M. Yusupov. 2011. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 334:1524-1529.
Cronshaw, J.M., A.N. Krutchinsky, W. Zhang, B.T. Chait, and M.J. Matunis. 2002. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol. 158:915-927.
Cuccurese, M., G. Russo, A. Russo, and C. Pietropaolo. 2005. Alternative splicing and nonsense-mediated mRNA decay regulate mammalian ribosomal gene expression. Nucleic Acids Res. 33:5965-5977.
Dabeva, M.D., and J.R. Warner. 1993. Ribosomal protein L32 of Saccharomyces cerevisiae regulates both splicing and translation of its own transcript. J Biol Chem. 268:19669-19674.
de la Cruz, J., K. Karbstein, and J.L. Woolford, Jr. 2015. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu Rev Biochem. 84:93-129.
Deng, Y., R.H. Singer, and W. Gu. 2008. Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev. 22:1037-1050.
Dragon, F., J.E. Gallagher, P.A. Compagnone-Post, B.M. Mitchell, K.A. Porwancher, K.A. Wehner, S. Wormsley, R.E. Settlage, J. Shabanowitz, Y. Osheim, A.L. Beyer, D.F. Hunt, and S.J. Baserga. 2002. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature. 417:967-970.
Du, T.G., S. Jellbauer, M. Muller, M. Schmid, D. Niessing, and R.P. Jansen. 2008. Nuclear transit of the RNA-binding protein She2 is required for translational control of localized ASH1 mRNA. EMBO Rep. 9:781-787.
Eng, F.J., and J.R. Warner. 1991. Structural basis for the regulation of splicing of a yeast messenger RNA. Cell. 65:797-804.
Fatica, A., A.D. Cronshaw, M. Dlakic, and D. Tollervey. 2002. Ssf1p prevents premature processing of an early pre-60S ribosomal particle. Mol Cell. 9:341-351.
Gabunilas, J., and G. Chanfreau. 2016. Splicing-Mediated Autoregulation Modulates Rpl22p Expression in Saccharomyces cerevisiae. PLoS Genet. 12:e1005999.
Grandi, P., V. Rybin, J. Bassler, E. Petfalski, D. Strauss, M. Marzioch, T. Schafer, B. Kuster, H. Tschochner, D. Tollervey, A.C. Gavin, and E. Hurt. 2002. 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell. 10:105-115.
Granneman, S., M.R. Nandineni, and S.J. Baserga. 2005. The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol Cell Biol. 25:10352-10364.
Gu, W., Y. Deng, D. Zenklusen, and R.H. Singer. 2004. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev. 18:1452-1465.
Haarer, B., S. Viggiano, M.A. Hibbs, O.G. Troyanskaya, and D.C. Amberg. 2007. Modeling complex genetic interactions in a simple eukaryotic genome: actin displays a rich spectrum of complex haploinsufficiencies. Genes Dev. 21:148-159.
Harnpicharnchai, P., J. Jakovljevic, E. Horsey, T. Miles, J. Roman, M. Rout, D. Meagher, B. Imai, Y. Guo, C.J. Brame, J. Shabanowitz, D.F. Hunt, and J.L. Woolford, Jr. 2001. Composition and functional characterization of yeast 66S ribosome assembly intermediates. Mol Cell. 8:505-515.
Herschlag, D. 1995. RNA chaperones and the RNA folding problem. J Biol Chem. 270:20871-20874.
Hoelz, A., E.W. Debler, and G. Blobel. 2011. The structure of the nuclear pore complex. Annu Rev Biochem. 80:613-643.
Hung, N.J., and A.W. Johnson. 2006. Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol Cell Biol. 26:3718-3727.
Ivanov, A.V., A.A. Malygin, and G.G. Karpova. 2006. [Eukaryotic ribosomal proteins: interaction with their own pre-mRNAs and involvement in the splicing regulation]. Mol Biol (Mosk). 40:640-649.
Johnson, A.W., J.H. Ho, G. Kallstrom, C. Trotta, E. Lund, L. Kahan, J. Dahlberg, and J. Hedges. 2001. Nuclear export of the large ribosomal subunit. Cold Spring Harb Symp Quant Biol. 66:599-605.
Klein, D.J., P.B. Moore, and T.A. Steitz. 2004. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J Mol Biol. 340:141-177.
Komili, S., N.G. Farny, F.P. Roth, and P.A. Silver. 2007. Functional specificity among ribosomal proteins regulates gene expression. Cell. 131:557-571.
Kressler, D., E. Hurt, and J. Bassler. 2017. A Puzzle of Life: Crafting Ribosomal Subunits. Trends Biochem Sci.
Kressler, D., D. Roser, B. Pertschy, and E. Hurt. 2008. The AAA ATPase Rix7 powers progression of ribosome biogenesis by stripping Nsa1 from pre-60S particles. J Cell Biol. 181:935-944.
Krogan, N.J., W.T. Peng, G. Cagney, M.D. Robinson, R. Haw, G. Zhong, X. Guo, X. Zhang, V. Canadien, D.P. Richards, B.K. Beattie, A. Lalev, W. Zhang, A.P. Davierwala, S. Mnaimneh, A. Starostine, A.P. Tikuisis, J. Grigull, N. Datta, J.E. Bray, T.R. Hughes, A. Emili, and J.F. Greenblatt. 2004. High-definition macromolecular composition of yeast RNA-processing complexes. Mol Cell. 13:225-239.
Lebreton, A., C. Saveanu, L. Decourty, J.C. Rain, A. Jacquier, and M. Fromont-Racine. 2006. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. J Cell Biol. 173:349-360.
Long, R.M., W. Gu, E. Lorimer, R.H. Singer, and P. Chartrand. 2000. She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J. 19:6592-6601.
Ma, J., A. Goryaynov, A. Sarma, and W. Yang. 2012. Self-regulated viscous channel in the nuclear pore complex. Proc Natl Acad Sci U S A. 109:7326-7331.
Meskauskas, A., J.R. Russ, and J.D. Dinman. 2008. Structure/function analysis of yeast ribosomal protein L2. Nucleic Acids Res. 36:1826-1835.
Mosammaparast, N., Y. Guo, J. Shabanowitz, D.F. Hunt, and L.F. Pemberton. 2002. Pathways mediating the nuclear import of histones H3 and H4 in yeast. J Biol Chem. 277:862-868.
Ni, L., and M. Snyder. 2001. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell. 12:2147-2170.
Nilsson, O.B., R. Hedman, J. Marino, S. Wickles, L. Bischoff, M. Johansson, A. Muller-Lucks, F. Trovato, J.D. Puglisi, E.P. O''Brien, R. Beckmann, and G. von Heijne. 2015. Cotranslational Protein Folding inside the Ribosome Exit Tunnel. Cell Rep. 12:1533-1540.
Nissan, T.A., J. Bassler, E. Petfalski, D. Tollervey, and E. Hurt. 2002. 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J. 21:5539-5547.
Nissan, T.A., K. Galani, B. Maco, D. Tollervey, U. Aebi, and E. Hurt. 2004. A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits. Mol Cell. 15:295-301.
Ohmayer, U., M. Gamalinda, M. Sauert, J. Ossowski, G. Poll, J. Linnemann, T. Hierlmeier, J. Perez-Fernandez, B. Kumcuoglu, I. Leger-Silvestre, M. Faubladier, J. Griesenbeck, J. Woolford, H. Tschochner, and P. Milkereit. 2013. Studies on the assembly characteristics of large subunit ribosomal proteins in S. cerevisae. PLoS One. 8:e68412.
Pausch, P., U. Singh, Y.L. Ahmed, B. Pillet, G. Murat, F. Altegoer, G. Stier, M. Thoms, E. Hurt, I. Sinning, G. Bange, and D. Kressler. 2015. Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. Nature communications. 6:7494.
Peng, W.T., M.D. Robinson, S. Mnaimneh, N.J. Krogan, G. Cagney, Q. Morris, A.P. Davierwala, J. Grigull, X. Yang, W. Zhang, N. Mitsakakis, O.W. Ryan, N. Datta, V. Jojic, C. Pal, V. Canadien, D. Richards, B. Beattie, L.F. Wu, S.J. Altschuler, S. Roweis, B.J. Frey, A. Emili, J.F. Greenblatt, and T.R. Hughes. 2003. A panoramic view of yeast noncoding RNA processing. Cell. 113:919-933.
Poll, G., T. Braun, J. Jakovljevic, A. Neueder, S. Jakob, J.L. Woolford, Jr., H. Tschochner, and P. Milkereit. 2009. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins. PLoS One. 4:e8249.
Qiu, C., K.L. McCann, R.N. Wine, S.J. Baserga, and T.M. Hall. 2014. A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization. Proc Natl Acad Sci U S A. 111:18554-18559.
Rout, M.P., J.D. Aitchison, A. Suprapto, K. Hjertaas, Y. Zhao, and B.T. Chait. 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol. 148:635-651.
Russo, A., and G. Russo. 2017. Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. Int J Mol Sci. 18.
Santos-Rosa, H., H. Moreno, G. Simos, A. Segref, B. Fahrenkrog, N. Pante, and E. Hurt. 1998. Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol Cell Biol. 18:6826-6838.
Saveanu, C., D. Bienvenu, A. Namane, P.E. Gleizes, N. Gas, A. Jacquier, and M. Fromont-Racine. 2001. Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. EMBO J. 20:6475-6484.
Schafer, T., B. Maco, E. Petfalski, D. Tollervey, B. Bottcher, U. Aebi, and E. Hurt. 2006. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature. 441:651-655.
Schafer, T., D. Strauss, E. Petfalski, D. Tollervey, and E. Hurt. 2003. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22:1370-1380.
Schutz, S., U. Fischer, M. Altvater, P. Nerurkar, C. Pena, M. Gerber, Y. Chang, S. Caesar, O.T. Schubert, G. Schlenstedt, and V.G. Panse. 2014. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. Elife. 3:e03473.
Segref, A., K. Sharma, V. Doye, A. Hellwig, J. Huber, R. Luhrmann, and E. Hurt. 1997. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 16:3256-3271.
Shahbabian, K., C. Jeronimo, A. Forget, F. Robert, and P. Chartrand. 2014. Co-transcriptional recruitment of Puf6 by She2 couples translational repression to mRNA localization. Nucleic Acids Res. 42:8692-8704.
Simoff, I., H. Moradi, and O. Nygard. 2009. Functional characterization of ribosomal protein L15 from Saccharomyces cerevisiae. Curr Genet. 55:111-125.
Thomas, F., and U. Kutay. 2003. Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J Cell Sci. 116:2409-2419.
Ting, Y.H., T.J. Lu, A.W. Johnson, J.T. Shie, B.R. Chen, S.S. Kumar, and K.Y. Lo. 2017. Bcp1 Is the Nuclear Chaperone of Rpl23 in Saccharomyces cerevisiae. J Biol Chem. 292:585-596.
Trotta, C.R., E. Lund, L. Kahan, A.W. Johnson, and J.E. Dahlberg. 2003. Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates. EMBO J. 22:2841-2851.
Truant, R., R.A. Fridell, R.E. Benson, H. Bogerd, and B.R. Cullen. 1998. Identification and functional characterization of a novel nuclear localization signal present in the yeast Nab2 poly(A)+ RNA binding protein. Mol Cell Biol. 18:1449-1458.
Ulbrich, C., M. Diepholz, J. Bassler, D. Kressler, B. Pertschy, K. Galani, B. Bottcher, and E. Hurt. 2009. Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits. Cell. 138:911-922.
Urbinati, C.R., G.B. Gonsalvez, J.P. Aris, and R.M. Long. 2006. Loc1p is required for efficient assembly and nuclear export of the 60S ribosomal subunit. Mol Genet Genomics. 276:369-377.
Vanrobays, E., J.P. Gelugne, P.E. Gleizes, and M. Caizergues-Ferrer. 2003. Late cytoplasmic maturation of the small ribosomal subunit requires RIO proteins in Saccharomyces cerevisiae. Mol Cell Biol. 23:2083-2095.
Venema, J., and D. Tollervey. 1999. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet. 33:261-311.
Wang, S., H. Sakai, and M. Wiedmann. 1995. NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J Cell Biol. 130:519-528.
Warner, J.R., G. Mitra, W.F. Schwindinger, M. Studeny, and H.M. Fried. 1985. Saccharomyces cerevisiae coordinates accumulation of yeast ribosomal proteins by modulating mRNA splicing, translational initiation, and protein turnover. Mol Cell Biol. 5:1512-1521.
Wente, S.R., and M.P. Rout. 2010. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol. 2:a000562.
Will, C.L., and R. Lührmann. 2011. Spliceosome structure and function. Cold Spring Harbor perspectives in biology. 3:a003707.
Yang, Y.T., Y.H. Ting, K.J. Liang, and K.Y. Lo. 2016. The Roles of Puf6 and Loc1 in 60S Biogenesis Are Interdependent, and Both Are Required for Efficient Accommodation of Rpl43. J Biol Chem. 291:19312-19323.
Yao, W., D. Roser, A. Kohler, B. Bradatsch, J. Bassler, and E. Hurt. 2007. Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2. Mol Cell. 26:51-62.
Zhang, J., K.L. McCann, C. Qiu, L.E. Gonzalez, S.J. Baserga, and T.M. Hall. 2016. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA. Nat Commun. 7:13085.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top