跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊圃臺
研究生(外文):Puu-Tai Yang
論文名稱:關渡和平鎮土壤的砷有效性在水稻生長期間變化之機制
論文名稱(外文):Temporal Dynamics of Arsenic Availability in Guandu and Pinchen Soils during Rice Cultivation
指導教授:王尚禮
指導教授(外文):Shan-Li Wang
口試日期:2017-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:90
中文關鍵詞:關渡平原砷物種水稻根圈氧化還原
外文關鍵詞:Guandu plainArsenic speciationPaddy riceRhizosphere soilRedox transformation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
臺北關渡平原生產稻米,其土壤砷濃度最高可達500 mg kg-1,然而與其他含砷土壤相比,關渡土壤水稻穀粒之砷轉移效率較低。在前人研究中雖針對關渡平原水稻根圈鐵膜對水稻砷吸收的影響進行探討,然而對於砷在土壤與水稻間的傳輸隨浸水時間的變化尚未完全了解,因此本研究目的為藉由分析土壤、土壤溶液及水稻根部砷、鐵濃度與物種,探討在關渡土壤與水稻根部之間鐵和砷的移動隨浸水時間的變化。
本研究以平鎮土壤做為關渡土壤之對照組,並外添加砷於平鎮土壤中,測得關渡與平鎮土壤總砷濃度分別為321與88.0 mg kg-1。盆栽試驗期間維持浸水,並於不同時間測量土壤pH和Eh值,收集土壤溶液測定Fe、Mn、As、TOC、NO3-和SO42-濃度以及溶液中砷物種組成,同時採集土壤與植物樣品,立即以液態氮冷凍並冷凍乾燥後,利用X光近邊緣結構 (X-ray absorption near edge structure, XANES)分析土壤與水稻根部之砷、鐵物種組成,另取部分植體於70 ℃下烘乾、研磨,並微波消化分解後,分別以感應耦合電漿質譜儀 (Inductively coupled plasma mass spectrometry, ICP-MS) 和原子吸收光譜 (Atomic absorption spectrometry, AAS) 測定植體砷和鐵濃度。結果顯示,由於關渡土壤有機質和無定形鐵氧化物含量較高,使得在浸水初期土壤快速還原,並促進鐵氧化物的還原溶解釋出,然而部分的砷由土壤固相釋出後,會受到無定形鐵氧化物的再吸附作用而降低砷的移動性,使得浸水初期砷釋出速率較為緩慢,而隨浸水時間增加逐漸上升,但由於關渡土壤中高達52.0%的總砷吸附於無定形鐵氧化物上,使得隨鐵氧化物還原溶解釋出的砷比例仍然較平鎮土壤高。當溶液中的鐵移動到水稻根表時,會受到水稻根際泌氧的影響而在水稻根表形成鐵膜,由於本研究中土壤處於長期浸水的狀態下,因此水稻鐵膜的鐵物種以纖鐵礦為主,而當砷由溶液往根圈鐵氧化物分布時,由於平鎮土壤As(V) 和DMA比例較關渡土壤高,使得平鎮土壤溶液中的砷較易被鐵膜所吸附,同時由於關渡土壤水稻根表鐵氧化物形成的空間障礙較大,使得As(III) 與含砷硫化物較不易被氧化且不易往水稻根部運輸,進而降低地上部砷的累積。
The soils at Guandu plain have been known for high As concentration since 2008. When comparing to other As contaminated soils, As in Guandu soils (Gd) seems to be less available and relatively less As was transported from soil to rice grain, which was attributed to the accumulation of As by iron plaque on rice root in previous studies. However, the transportation of As from soil to rice roots at different rice growing stages has not been fully understood. To elucidate how As transports from soil solid phase to rice roots, pot experiment was carried out in an environment-controlled greenhouse with nature light source. For the purpose of comparison, the experiment was also conducted for Pinchen soil (Pc) with a high Fe content. The As concentrations of Gd and As-spiked Pc soils were 321 and 88.0 mg kg-1, respectively. The soils were submerged during rice cultivation. Soil pH and Eh were measured every 10-20 days. Soil solutions, soil, core samples and rice plants were also collected at certain time intervals during the experiments. The results showed that the higher contents of soil organic matter and amorphous iron (hydr)oxides in Gd soil led to a rapid decrease in Eh and the release of Fe in the early stage of submergence, while the releasing rate of arsenic was slower due to the re-adsorption by iron (hydr)oxides in the soil. Nevertheless, a higher ratio of arsenic was released into soil solution compared to the counterpart of Pc soil because there was up to 52% of total arsenic content sorbed on amorphous Fe (hydr)oxides in Gd soil. When Fe(II) is released and moved to the surface of rice roots, Fe(II) would be oxidized to Fe(III), which subsequently precipitates in the rhizosphere and rice root surface due to radial oxygen loss (ROL) from rice roots. In this study, lepidocrocite was the main Fe species in iron plaques of both soils, which suggested that ROL from rice roots under flooded condition was a gradual process. Because of higher ratio of As(V) and DMA in Pc soil solution, arsenic was sorbed much readily onto iron plaques in Pc soil than in Gd soil. Spatial barriers in rice rhizosphere may also limit oxidation and transportation of arsenic from soil solution to rice roots, which then lowered the amount of arsenic accumulated in rice shoot.
摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 IX
第一章 、前言 1
第二章 、文獻回顧 2
2-1 環境中砷的來源、暴露途徑與毒性 2
2-2 砷在環境中的流布 3
2-2.1 砷在土壤中的物種與形態 3
2-2.2 影響砷在土壤中移動性的因子 4
2-3 水稻根圈 12
2-3.1 水稻根際泌氧 12
2-3.2 水稻根圈鐵和砷的累積 12
2-4 砷在水稻根部與地上部的運輸 13
2-5 關渡平原與平鎮土壤 15
第三章 、材料與方法 18
3-1 試驗材料 18
3-1.1 土壤採樣與前處理 18
3-1.2 水稻育苗 18
3-2 土壤基本性質分析 20
3-2.1 pH值 (McLean, 1982) 20
3-2.2 電導度 (Rhoades, 1982) 20
3-2.3 土壤質地分析:鮑氏比重計法 (Gee and Bauder, 1986) 20
3-2.4 有機質含量:濕燒法 (Nelson and Sommers, 1996) 20
3-2.5 陽離子交換容量:中性醋酸銨法 (Thomas, 1982) 21
3-2.6 無定形鐵氧化物含量:草酸萃取法 (Schwertmann, 1964) 21
3-2.7 游離性鐵氧化物含量:DCB萃取法 (Mehra and Jackson, 1958) 21
3-2.8 土壤砷濃度測定:土壤及底泥中砷檢測方法 ( NIEA S310.64B) 22
3-2.9 土壤全量消解:王水消化分解法 (NIEA S301.60B) 22
3-3 盆栽試驗 23
3-4 土壤樣品分析 24
3-4.1 土壤砷連續萃取 (Wenzel et al., 2001) 24
3-4.2 X光吸收光譜 (X-ray absorption spectroscopy, XAS) 26
3-5 土壤溶液樣品收集與分析 28
3-5.1 總鐵含量 28
3-5.2 總砷含量 28
3-5.3 砷物種含量 28
3-5.4 可溶性有機碳(DOC)分析 28
3-5.5 陰離子層析分析 28
3-6 植體樣品收集與分析 30
3-6.1 植物樣品收集與前處理 30
3-6.2 植體全量消解 30
3-6.3 X光吸收光譜 30
3-7 土柱樣品收集 31
3-7.1 土柱採集 31
3-7.2 土柱包埋 31
3-7.3 土柱切片 31
3-8 LA-ICP-MS樣品製備與分析 33
第四章 、結果與討論 34
4-1 土壤基本性質 34
4-2 水稻地上部砷累積隨浸水時間的變化 36
4-3 土壤pH、Eh隨浸水時間之變化 38
4-4 土壤固相砷的分布、物種變化與移動性 39
4-5 土壤溶液可溶性有機碳與各離子的釋出 45
4-6 水稻根部鐵與砷的累積 55
第五章 、結論 71
第六章 、參考文獻 73
附件目錄…… 88
蔣永正。2004。水稻田常用農藥對稻株生育之影響。中華民國雜草學會會刊 25: 83-96。
邢承華、蔡妙珍、劉鵬、徐根娣。2006。植物根表鐵錳氧化物膠膜的環境生態作用。生態環境 15: 1380-1384。
張尊國、徐貴新、黃政恆、林景行。2007。臺北市農地土壤重金屬砷含量調查及查證計畫。台北市政府環保局。
張尊國、黃文達。2008。北投關渡平原砷含量異常農地對作物影響之研究計畫。台北市政府產業發展局。
吳懿芳。2009。土壤溶液中砷物種分布及轉變與其對水稻之毒害。國立臺灣大學農業化學系碩士論文。
廖健利。2010。砷汙染土壤中不同化學處理方法對水稻及青梗白菜吸收砷之影響。國立臺灣大學農業化學系碩士論文。
謝易錚。2011。不同水稻品種根部鐵膜生成之差異及其對水稻吸收砷之影響。國立臺灣大學農業化學系碩士論文。
陳梅桂。2012。土壤性質與水稻品種對鐵膜的生成與水稻幼苗吸收砷之影響。國立臺灣大學農業化學系碩士論文。
黃泰祥。2013。利用土壤水分管理降低兩種砷汙染土中糙米砷濃度。國立臺灣大學農業化學系碩士論文。
江珮瑜。2013。不同水稻品種鐵膜對三價砷與五價砷於水稻幼苗植體中累積及其物種之影響。國立臺灣大學農業化學系碩士論文。
吳佩蓉。2013。添加不同有機質材至砷汙染土壤中對土壤溶液砷濃度及水稻幼苗砷吸收量之影響。國立臺灣大學農業化學系碩士論文。
林聖淇。2014。溫泉地區砷汙染之地質化學程序及對水田與水稻之影響-臺灣關渡平原為例。國立臺灣大學生物環境系統工程學系博士論文。
許健輝。2014。水稻品種及根部鐵膜對關渡平原土壤中植體砷累積及物種之影響。國立臺灣大學農業化學系博士論文。
林聖淇、張尊國。2015。台北關渡平原之砷汙染及對人體健康的影響。地質 34: 38-41。
Abedin, M. .J., Cotter-Howells, J. and Meharg, A. A. (2002). Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant and Soil 240: 311-319.
Aguilar, L. and Thibodeaux, L. J. (2005). Kinetics of peat soil dissolved organic carbon release from bed sediment to water. Part 1: Laboratory simulation. Chemosphere 58: 1309-1318.
Al-Sid-Cheikh, M., Pédrot, M., Dia, A., Guenet, H., Vantelon, D., Davranche, M., Gruau, G. and Delhaye, T. (2015). Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences. Science of The Total Environment 515: 118-128.
Arao, T., Kawasaki, A., Baba, K. and Matsumoto, S. (2011). Effects of arsenic compound amendment on arsenic speciation in rice grain. Environmental Science and Technology 45: 1291-1297.
Armstrong, J. and Armstrong, W. (2001). Rice and phragmites: Effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. American Journal of Botany 88: 1359-1370.
Armstrong, J., Armstrong, W. and Beckett, P. M. (1988). Phragmites-australis - a critical-appraisal of the ventilating pressure concept and an analysis of resistance to pressurized gas-flow and gaseous-diffusion in horizontal rhizomes. New Phytologist 110: 383-389.
Armstrong, J., Armstrong, W. and Beckett, P. M. (1992). Phragmites-australis - venturi-induced and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytologist 120: 197-207.
Armstrong, W. (1970). Rhizosphere oxidation in rice and other species - a mathematical model based on oxygen flux component. Physiologia Plantarum 23: 623-630.
Armstrong, W. (1980). Aeration in higher plants. Advances in Botanical Research 7: 225-332.
Bacha, R. E. and Hossner, L. R. (1977). Characteristics of coatings formed on rice roots as affected by iron and manganese additions. Soil Science Society of America Journal 41: 931-935.
Basnet, P., Amarasiriwardena, D., Wu, F. C., Fu, Z. Y. and Zhang, T. (2014). Elemental bioimaging of tissue level trace metal distributions in rice seeds (Oryza sativa L.) from a mining area in China. Environmental Pollution 195: 148-156.
Bauer, M. and Blodau, C. (2006). Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Science of the Total Environment 354: 179-190.
Bhattacharya, P., Samal, A. C., Majumdar, J. and Santra, S. C. (2009). Transfer of arsenic from groundwater and paddy soil to rice plant (Oryza sativa L.): A micro level study in West Bengal, India. World Journal of Agricultural Sciences 5: 425-431.
Bhumbla, D. K. and Keefler, R. F. (1994). Arsenic mobilization and bioavailability in soils. In J. O. Niragu (Ed.), Arsenic in the environment, Part I: Cycling and characterization (pp 51-82). New York: John Wiley & Sons.
Bowell, R. J. (1994). Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry 9: 279-286.
Carey, A. M., Norton, G. J., Deacon, C., Scheckel, K. G., Lombi, E., Punshon, T., Guerinot, M. L., Lanzirotti, A., Newville, M., Choi, Y. S., Price, A. H. and Meharg, A. A. (2011). Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytologist 192: 87-98.
Chang, S. C. and Jackson, M. L. (1957). Fractionation of soil phosphorus. Soil science 84: 133-144.
Chao, D. Y., Chen, Y., Chen, J., Shi, S., Chen, Z., Wang, C., Danku, J. M., Zhao, F. J. and Salt, D. E. (2014). Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biology 12: e1002009.
Chen, C. C., Dixon, J. B. and Turner, F. T. (1980). Iron coatings on rice roots - mineralogy and quantity influencing factors. Soil Science Society of America Journal 44: 635-639.
Chen, Y., Moore, K. L., Miller, A. J., McGrath, S. P., Ma, J. F. and Zhao, F. J. (2015). The role of nodes in arsenic storage and distribution in rice. Journal of Experimental Botany 66: 3717-3724.
Chen, Z., Zhu, Y. G., Liu, W. J. and Meharg, A. A. (2005). Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytologist 165: 91-97.
Cheng, H., Hu, Y., Luo, J., Xu, B. and Zhao, J. (2009). Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials 165: 13-26.
Chiang, K. Y., Chen, T. Y., Lee, C. H., Lin, T. L., Wang, M. K., Jang, L. Y. and Lee, J. F. (2013). Biogeochemical reductive release of soil embedded arsenate around a crater area (Guandu) in northern Taiwan using X-ray absorption near-edge spectroscopy. Journal of Environmental Sciences 25: 626-636.
Chow, A. T., Tanji, K. K., Gao, S. and Dahlgren, R. A. (2006). Temperature, water content and wet–dry cycle effects on DOC production and carbon mineralization in agricultural peat soils. Soil Biology and Biochemistry 38: 477-488.
Chowdhury, U. K., Biswas, B. K., Chowdhury, T. R., Samanta, G., Mandal, B. K., Basu, G. C., Chanda, C. R., Lodh, D., Saha, K. C., Mukherjee, S. K., Roy, S., Kabir, S., Quamruzzaman, Q. and Chakraborti, D. (2000). Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environmental Health Perspectives 108: 393-397.
Colmer, T. D. (2003). Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant, Cell and Environment 26: 17-36.
Cullen, W. R. and Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical reviews 89: 713-764.
Dhar, R. K., Biswas, B. K., Samanta, G., Mandal, B. K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A. W., Ahmed, S. A. and Hadi, S. A. (1997). Groundwater arsenic calamity in Bangladesh. Current Science 73: 48-59.
Dixit, S. and Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals:  Implications for arsenic mobility. Environmental Science and Technology 37: 4182-4189.
Evans, G., Evans, J., Redman, A., Johnson, N. and Foust, R. D. (2005). Unexpected beneficial effects of arsenic on corn roots grown in culture. Environmental Chemistry 2: 167-170.
Faure, G. (1998). Principles and applications of geochemistry (2 ed.). Upper Saddle River, New Jersey: Prentice Hall.
Fendorf, S., Eick, M. J., Grossl, P. and Sparks, D. L. (1997). Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environmental science and technology 31: 315-320.
Filella, M., Buffle, J. and Van Leeuwen, H. P. (1990). Effect of physico-chemical heterogeneity of natural complexants: Part I. Voltammetry of labile metal—fulvic complexes. Analytica Chimica Acta 232: 209-223.
Foster, A. L. (2003). Spectroscopic investigations of arsenic species in solid phases. In A. H. Welch and K. G. Stollenwerk (Eds.) Arsenic in ground water: Geochemistry and occurrence (pp. 27-65). Boston, MA: Springer US.
Fu, Y., Chen, M., Bi, X., He, Y., Ren, L., Xiang, W., Qiao, S., Yan, S., Li, Z. and Ma, Z. (2011). Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China. Environmental Pollution 159: 1757-1762.
Fujikawa, Y. and Fukui, M. (1997). Radionuclide sorption to rocks and minerals: Effects of pH and inorganic anions, Part 2: Sorption and speciation of selenium. Radiochimica Acta 76: 163-174.
Gault, A. G., Islam, F. S., Polya, D. A., Charnock, J. M., Boothman, C., Chatterjee, D. and Lloyd, J. R. (2005). Microcosm depth profiles of arsenic release in a shallow aquifer, West Bengal. Mineralogical Magazine 69: 855-863.
Gee, G. W. and Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis, Part 1: Physical and mineralogical methods (2nd ed., pp. 383-411). Madison, WI, USA: Soil Science Society of America.
Goldberg, S. (2002). Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Science Society of America Journal 66: 413-421.
Goldberg, S. and Johnston, C. (2001). Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science 234: 204-216.
Gorby, M. S. (1994). Arsenic in human medicine. In J. O. Nriagu (Ed.), Arsenic in the environment, Part II: Human health and ecosystem effects (pp 1-16). New York : Wiley.
Grafe, M., Eick, M. J. and Grossl, P. R. (2001). Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Science Society of America Journal 65: 1680-1687.
Gu, B., Schmitt, J., Chen, Z., Liang, L. and McCarthy, J. F. (1994). Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environmental Science and Technology 28: 38-46.
Hansel, C. M., Fendorf, S., Sutton, S. and Newville, M. (2001). Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science and Technology 35: 3863-3868.
Henke, K. R. and Hutchison, A. (2009). Arsenic chemistry. In K. R. Henke (Ed.), Arsenic: Environmental Chemistry, Health Threats and Waste Treatment (pp. 9-68). United Kingdom: John Wiley & Sons Ltd.
Hsu, K. H., Hsieh, L. L., Chiou, H. Y., Lee, C. J., Wang, C. Y., Lee, T. H. and Chen, C. J. (1999). Comparison of characteristics and arsenic toxicity between residents of southwestern region and northeastern basin in TTaiwan: A study on prevalence of hypertension. Chinese Journal of Public Health 18: 124-133.
Jönsson, J. and Sherman, D. M. (2008). Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite: Implications for arsenic release in anoxic groundwaters. Chemical Geology 255: 173-181.
Ko, M. S., Kim, J. Y., Park, H. S. and Kim, K. W. (2015). Field assessment of arsenic immobilization in soil amended with iron rich acid mine drainage sludge. Journal of Cleaner Production 108: 1073-1080.
Langner, P., Mikutta, C. and Kretzschmar, R. (2012). Arsenic sequestration by organic sulphur in peat. Nature Geoscience 5: 66-73.
Larsen, O. and Postma, D. (2001). Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochimica et Cosmochimica Acta 65: 1367-1379.
Li, G. C., Lin, H. T. and Lai, C. S. (1994). Uptake of heavy metals by plants in Taiwan. Biogeochemistry Trace Element 16: 153-160.
Li, R. Y., Ago, Y., Liu, W. J., Mitani, N., Feldmann, J., McGrath, S. P., Ma, J. F. and Zhao, F. J. (2009). The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiology 150: 2071-2080.
Lin, H. T., Wong, S. S. and Li, G. C. (2004). Heavy metal content of rice and shellfish in Taiwan. Journal of Food and Drug Analysis 12: 167-174.
Liu, C. W., Chen, Y. Y., Kao, Y. H. and Maji, S. K. (2014). Bioaccumulation and translocation of arsenic in the ecosystem of the Guandu wetland, Taiwan. Wetlands 34: 129-140.
Liu, G. and Cai, Y. (2010). Complexation of arsenite with dissolved organic matter: Conditional distribution coefficients and apparent stability constants. Chemosphere 81: 890-896.
Liu, W. J., Zhu, Y. G., Hu, Y., Williams, P. N., Gault, A. G., Meharg, A. A., Charnock, J. M. and Smith, F. A. (2006). Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environmental Science and Technology 40: 5730-5736.
Liu, W. J., Zhu, Y. G., Smith, F. A. and Smith, S. E. (2004). Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? Journal of Experimental Botany 55: 1707-1713.
Lomax, C., Liu, W. J., Wu, L. Y., Xue, K., Xiong, J. B., Zhou, J. Z., McGrath, S. P., Meharg, A. A., Miller, A. J. and Zhao, F. J. (2012). Methylated arsenic species in plants originate from soil microorganisms. New Phytologist 193: 665-672.
Lu, F. J. (1990). Fluorescent humic substances and blackfoot disease in Taiwan. Applied Organometallic Chemistry 4: 191-195.
Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishiguro, M., Murata, Y. and Yano, M. (2006). A silicon transporter in rice. Nature 440: 688-691.
Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M. and Yano, M. (2007). An efflux transporter of silicon in rice. Nature 448: 209-212.
Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P. and Zhao, F. J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences 105: 9931-9935.
Makino, T., Nakamura, K., Katou, H., Ishikawa, S., Ito, M., Honma, T., Miyazaki, N., Takehisa, K., Sano, S., Matsumoto, S., Suda, A., Baba, K., Kawasaki, A., Yamaguchi, N., Akahane, I., Tomizawa, M. and Arao, T. (2016). Simultaneous decrease of arsenic and cadmium in rice (Oryza sativa L.) plants cultivated under submerged field conditions by the application of iron-bearing materials. Soil Science and Plant Nutrition 62: 340-348.
Manning, B. A. and Goldberg, S. (1996). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal 60: 121-131.
McKnight, D. M., Bencala, K. E., Zellweger, G. W., Aiken, G. R., Feder, G. L. and Thorn, K. A. (1992). Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit County, Colorado. Environmental Science and Technology 26: 1388-1396.
McLean, E. O. (1982). Soil pH and lime requirement. In Page A. L., Miller R. H., Kenney D. R. (Eds.), Methods of soil analysis, Part 2: Chemical and Microbiological Properties (pp 199-224). Madison, Wisconsin, USA: American Society of Agronomy Inc. and Soil Science Society of America.
Meharg, A. A. (2004). Arsenic in rice–understanding a new disaster for south-east Asia. Trends in Plant Science 9: 415-417.
Meharg, A. A. and Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154: 29-43.
Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., Cambell, R. C. J., Sun, G., Zhu, Y. G. and Feldmann, J. (2009). Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science and Technology 43: 1612-1617.
Mehra, O. P. and Jackson, M. L. (1958). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Paper presented at the National conference on clays and clays minerals.
Mei, X. Q., Ye, Z. H. and Wong, M. H. (2009). The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environmental Pollution 157: 2550-2557.
Melamed, R., Jurinak, J. J. and Dudley, L. M. (1995). Effect of adsorbed phosphate on transport of arsenate through an oxisol. Soil Science Society of America Journal 59: 1289-1294.
Mikutta, C. and Kretzschmar, R. (2011). Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Environmental Science and Technology 45: 9550-9557.
Nelson, D, W. and Sommers, L, E. (1996). Total carbon, organic carbon, and organic matter. In J. M. Bartels (Ed.), Methods of soil analysis part 3—chemical methods (pp 961-1010). Madison, Wisconsin, USA: American Society of Agronomy Inc. and Soil Science Society of America.
Ng, J. C. (2005). Environmental contamination of arsenic and its toxicological impact on humans. Environmental Chemistry 2: 146-160.
O''Day, P. A., Vlassopoulos, D., Root, R. and Rivera, N. (2004). The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proceedings of the National Academy of Sciences of the United States of America 101: 13703-13708.
Pal, T., Mukherjee, P. K. and Sengupta, S. (2002). Nature of arsenic pollutants in groundwater of Bengal basin - A case study from Baruipur area, West Bengal, India. Current Science 82: 554-561.
Patrick, W. H. and Jugsujinda, A. (1992). Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Science Society of America Journal 56: 1071-1073.
Pierce, M. L. and Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research 16: 1247-1253.
Ponnamperuma, F. N. (1972). The chemistry of submerged soils. Advances in agronomy 24: 29-96.
Pontius, K., Brown, G. and Chen, C. J. (1994). Health implications of arsenic in drinking water. Journal of the American Water Works Association 86: 52-63.
Rahman, M. A., Hasegawa, H., Rahman, M. M., Rahman, M. A. and Miah, M. A. M. (2007). Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69: 942-948.
Redman, A. D., Macalady, D. L. and Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science and Technology 36: 2889-2896.
Rhoades, J. D. (1982). Soluble salts. In Page A. L., Miller R. H., Kenney D. R. (Eds.), Methods of soil analysis, Part 2: Chemical and Microbiological Properties (pp 167-178). Madison, Wisconsin, USA: American Society of Agronomy Inc. and Soil Science Society of America.
Saeki, K. and Matsumoto, S. (1994). Selenite adsorption by a variety of oxides. Communications in Soil Science and Plant Analysis 25: 2147-2158.
Schwertmann, U. (1964). The differentiation of iron oxide in soils by a photochemical extraction with acid ammonium oxalate. Journal of Plant Nutrition and Soil Science 105: 194-202.
Schwertmann, U. and Thalmann, H. (1976). Influence of [Fe(II)], [Si], and pH on formation of lepidocrocite and ferrihydrite during oixidation of aqueous FeCl2 solutions. Clay Minerals 11: 189-200.
Sekaly, A. L. R., Mandal, R., Hassan, N. M., Murimboh, J., Chakrabarti, C. L., Back, M. H., Gregoire, D. C. and Schroeder, W. H. (1999). Effect of metal/fulvic acid mole ratios on the binding of Ni (II), Pb (II), Cu (II), Cd (II), and Al (III) by two well-characterized fulvic acids in aqueous model solutions. Analytica Chimica Acta 402: 211-221.
Sharma, A. K., Tjell, J. C., Sloth, J. J. and Holm, P. E. (2014). Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Applied Geochemistry 41: 11-33.
Sharma, P. and Kappler, A. (2011). Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate. Journal of Contaminant Hydrology 126: 216-225.
Sharma, P., Ofner, J. and Kappler, A. (2010). Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Environmental Science and Technology 44: 4479-4485.
Sharma, V. K. and Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International 35: 743-759.
Sherman, D. M. and Randall, S. R. (2003). Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochimica et Cosmochimica Acta 67: 4223-4230.
Smedley, P. L. and Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17: 517-568.
Solaiman, A. R. M., Meharg, A. A., Gault, A. G. and Charnock, J. M. (2009). Arsenic mobilization from iron oxyhydroxides is regulated by organic matter carbon to nitrogen (C:N) ratio. Environment International 35: 480-484.
Sposito, G. (1984). Inorganic and organic solute adsorption in soils. The surface chemistry of soils (pp 113-153). New York: Oxford University Press.
Squibb, K. S. and Fowler, B. A. (1983). The toxicity of arsenic and its compounds. In Fowler (Ed.), Biological and environmental effects of arsenic (pp 233-270). Amsterdam, New York, Oxford: Elsevier.
Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons.
Syu, C. H., Huang, C. C., Jiang, P. Y., Lee, C. H. and Lee, D. Y. (2015). Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. Journal of Hazardous Materials 286: 179-186.
Syu, C. H., Lee, C. H., Jiang, P. Y., Chen, M. K. and Lee, D. Y. (2014). Comparison of as sequestration in iron plaque and uptake by different genotypes of rice plants grown in as-contaminated paddy soils. Plant and Soil 374: 411-422.
Takahashi, T., Park, C. Y., Nakajima, H., Sekiya, H. and Toriyama, K. (1999). Ferric iron transformation in soils with rotation of irrigated rice upland crops and effect on soil tillage properties. Soil Science and Plant Nutrition 45: 163-173.
Thomas, G. W. (1982). Exchangeable cations In Page A. L., Miller R. H., Kenney D. R. (Eds.), Methods of soil analysis, Part 2: Chemical and Microbiological Properties (pp 159-166). Madison, Wisconsin, USA: American Society of Agronomy Inc. and Soil Science Society of America.
Tripathi, R. D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D. K. and Maathuis, F. J. M. (2007). Arsenic hazards: Strategies for tolerance and remediation by plants. Trends in Biotechnology 25: 158-165.
Uthus, E. O. (1992). Evidence for arsenic essentiality. Environmental Geochemistry and Health 14: 55-58.
Violante, A., Barberis, E., Pigna, M. and Boero, V. (2003). Factors affecting the formation, nature, and properties of iron precipitation products at the soil-root interface. Journal of Plant Nutrition 26: 1889-1908.
Wang, K. and Xing, B. (2005). Structural and sorption characteristics of adsorbed humic acid on clay minerals. Journal of Environmental Quality 34: 342-349.
Wang, S. and Mulligan, C. N. (2006). Effect of natural organic matter on arsenic release from soilsand sediments into groundwater. Environmental Geochemistry and Health 28: 197-214.
Wang, Z., Fu, H., Zhang, L., Song, W. and Chen, J. (2017). Ligand-promoted photoreductive dissolution of goethite by atmospheric low-molecular dicarboxylates. The Journal of Physical Chemistry A 121: 1647-1656.
Waychunas, G. A., Rea, B. A., Fuller, C. C. and Davis, J. A. (1993). Surface chemistry of ferrihydrite, Part 1: Exafs studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta 57: 2251-2269.
Wenzel, W. W. (2012). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. In B. J. Alloway (Ed.), Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3 ed., pp. 241-282): Springer Netherlands.
Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E. and Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica chimica acta 436: 309-323.
Williams, P. N., Islam, M. R., Adomako, E. E., Raab, A., Hossain, S. A., Zhu, Y. G., Feldmann, J. and Meharg, A. A. (2006). Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environmental Science and Technology 40: 4903-4908.
Woolson, E. A., Axley, J. H. and Kearney, P. C. (1971). The chemistry and phytotoxicity of arsenic in soils: I. Contaminated field soils. Soil Science Society of America Journal 35: 938-943.
Wu, C., Ye, Z., Li, H., Wu, S., Deng, D., Zhu, Y. and Wong, M. (2012). Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? Journal of Experimental Botany 63: 2961-2970.
Wu, Z. C., Ren, H., McGrath, S. P., Wu, P. and Zhao, F. .J. (2011). Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiology 157: 498-508.
Yamaguchi, N., Nakamura, T., Dong, D., Takahashi, Y., Amachi, S. and Makino, T. (2011). Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83: 925-932.
Yamaguchi, N., Ohkura, T., Takahashi, Y., Maejima, Y. and Arao, T. (2014). Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environmental Science and Technology 48: 1549-1556.
Yamane, T., Yamaji, T. and Takami, Y. (1976). Mechanism of rice plant injury in arsenic contaminated paddy soils and its preventive measures, 1: Influence of arsenite and arsenate in growth media on the nutrient uptake, growth and yield of rice plant. Bulletin of the Shimane Agricultural Experiment Station.
Yamauchi, H. and Fowler, B. A. (1994). Toxicity and metabolism of inorganic and methylated arsenicals. In J. O. Niragu (Ed.), Arsenic in the environment, part II: Human Health and Ecosystems Effects (pp. 35-53). New York: John Wiley & Sons.
Ye, W. L., Wood, B. A., Stroud, J. L., Andralojc, P. J., Raab, A., McGrath, S. P., Feldmann, J. and Zhao, F. J. (2010). Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiology 154: 1505-1513.
Yu, H. Y., Li, F. B., Liu, C. S., Huang, W., Liu, T. X. and Yu, W. M. (2016). Chapter 5 - iron redox cycling coupled to transformation and immobilization of heavy metals: implications for paddy rice safety in the red soil of south china. In L. S. Donald (Ed.), Advances in agronomy (Vol. 137, pp. 279-317): Academic Press.
Zhao, F. J., Zhu, Y. G. and Meharg, A. A. (2013). Methylated arsenic species in rice: Geographical variation, origin, and uptake mechanisms. Environmental Science and Technology 47: 3957-3966
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top