跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭涵丹
研究生(外文):Han-Tan Cheng
論文名稱:Pseudomonas putida A7及 Streptomyces coelicolor M145 誘發阿拉伯芥系統性抗病之研究
論文名稱(外文):Studies on systemic resistance induced by Pseudomonas putida A7 and Streptomyces coelicolor in Arabidopsis thaliana
指導教授:林乃君林乃君引用關係
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:93
中文關鍵詞:促進植物生長根棲細菌阿拉伯芥誘導系統性抗性植物防禦荷爾蒙
外文關鍵詞:plant growth-promoting rhizobacteriaArabidopsis thalianainduced systemic resistancedefence phytohormones
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
農業上,為了增加作物產量及避免害蟲或病原菌造成的損失,通常會施用化學肥料及農藥。然而,施用這些化學物質所衍生的環境議題,讓人們開始擔心其對生態系會造成進一步的破壞,因此近年來有許多研究都希望找出替代方法來降低化學藥劑的使用。許多學者提出將具直接或間接促進植物生長之促進植物生長根棲細菌 (Plant growth-promoting rhizobacteria, PGPR ) 導入綜合蟲害管理 (integrated pest management), 應是一個很好的策略。Pseudomonas putida A7及 Streptomyces coelicolor strain M145分別為由番茄根部分離到的內生菌及土壤中的微生物,均為可以促進植物生長根棲細菌,本研究中發現其不但可以促進阿拉伯芥地上部的生長,也可以提高抵抗病原菌 Pseudomonas syringae pv. tomato (Pst) DC3000 的能力。以 P. putida A7 進行根部處理後的植物,無法於 jar1、pad4 和npr1等突變植株上誘導抗性之現象均顯示 P. putida A7 產生之抗性反應與水楊酸、茉莉酸及乙烯的訊息傳導路徑有關。利用RT-PCR分析發現,水楊酸傳導路徑的指標基因 PR1 和 PR5在接種 Pst DC3000 後,其在葉部表現量較高且較快表現;而茉莉酸及乙烯傳導路徑的指標基因 LOX2、HEL及GST2 的表現也有類似現象。S. coelicolor M145 同樣能使阿拉伯芥野生株及突變株 pad4 產生對 Pst DC3000 抗性反應,卻無法於 jar1、sid2 和npr1等突變植株上誘導抗性之現象,均顯示其產生之植物系統性抗病反應與水楊酸、茉莉酸及乙烯的訊息傳導路徑有關。利用 RT-PCR 分析發現,S. coelicolor M145同樣可以較迅速誘導且提高 PR1 和 PR5 的表現,且在PDF1.2、LOX2、HEL 及 GST2 的表現上也有相同現象。透過實際萃取植物中水楊酸與茉莉酸的含量並以 high performance liquid chromatography 偵測後發現,經過P. putida A7 與 S. coelicolor M145接種後,受到Pst DC3000 感染之阿拉伯芥,其茉莉酸之含量均增加。綜言之,P. putida A7及S. coelicolor M145處理根系後,影響植物荷爾蒙水楊酸、茉莉酸及乙烯訊息傳導,使阿拉伯芥誘發系統性抗性,產生防禦反應抵抗葉部病原菌 Pst DC3000 所產生的病害。
During agricultural practice, chemical fertilizers and pesticides are often applied to enhance crop yield and prevent losses caused by pests and pathogens. However, environmental issues derived from utilization of such chemicals raise concerns about further damage to our ecosystem, and alternative means with similar effects should be developed to lessen the problem. Use of plant growth-promoting rhizobacteria (PGPR) with ability to promote plant growth directly or indirectly becomes a good strategy incorporated into the integrated pest management (IPM) program. In our studies, two soil habitants, Pseudomonas putida A7 and Streptomyces coelicolor strain M145, were proved to be plant growth promoting rhizobacteria, which not only promote plant growth but also induce resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 in Arabidopsis thaliana. Further studies showed that P. putida A7 can induce resistance against Pst DC3000 in the Arabidopsis mutant lines, jar1, pad4 and npr1. By means of semiquantitative RT-PCR, we also found that higher amount and faster expression of the salicylic acid (SA) maker genes PR1 and PR5 were observed in P. putida A7-pretreated Arabidopsis compared to the water-treated control after Pst DC3000 infection. Stronger and faster responses upon Pst DC3000 infection in the A7-pretreated Arabidopsis were also found in the expression of genes involved in jasmonic acid (JA) and ethylene (ET) signaling pathways, such as LOX2, HEL and GST2. These data indicate that SA and JA/ET signaling pathways are involved in P. putida A7-induced systemic resistance to Pst DC3000 in A. thaliana. On the other hand, S. coelicolor M145-treated Arabidopsis mutant lines, jar1, npr1 and etr1, lost their ability to trigger systemic resistance to Pst DC3000. Futhermore, the expressions of PR1 and PR5 as well as PDF1.2, LOX2, HEL and GST2 were also stronger and faster after Pst DC3000 infection. Taking togather, we demonstrated P. putida A7 and S. coelicolor M145 probably can use different mechanisms to affect signaling pathways involving SA, JA and ET, to induce systemic resistance against Pst DC3000 in A. thaliana.
摘要 i
英文摘要 iii
對照表 v
目錄 vi
表目錄 xi
圖目錄 xii
附錄目錄 xiv
壹、前人研究 1
一、促進植物生長之根棲細菌 1
(一) 鏈黴菌 (Streptomyces spp.) 3
(二) 假單孢菌屬 (Pseudomonas spp.) 5
二、植物荷爾蒙在阿拉伯芥生長之研究 6
三、阿拉伯芥抗病防禦機制之研究 8
(一) 植物之免疫反應 8
(二) 活性氧分子在植物免疫反應上所扮演的角色 10
(三) 植物荷爾蒙與免疫反應之關係 10
(四) 系統性抗性 11
四、番茄細菌性斑點病菌 (Pseudomonas syringae pv. tomato DC3000) 14
貳、研究動機與目的 16
參、材料方法 18
一、植物材料與生長條件 18
二、細菌材料與培養條件 18
三、促進植物生長根棲細菌接種處理 19
四、促進阿拉伯芥生長試驗 19
五、病原性試驗 20
六、長時間病原性試驗 20
七、半定量反轉錄聚合酶鏈鎖反應 20
1. 萃取阿拉伯芥 RNA 21
2. 反轉錄反應 22
3. 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 22
七、水楊酸的萃取與定量 23
1. 水楊酸萃取 23
2. 高效液相層析儀分析 24
3. 水楊酸含量的計算:自由型水楊酸及醣基化水楊酸的濃度…………. 24
八、茉莉酸的萃取與定量 25
1. 茉莉酸萃取 25
2. 高效液相層析儀分析 25
3. 茉莉酸含量之計算……………………………………………….………26
九、 統計分析 26
肆、 研究結果 27
一、 不同濃度P. putida A7對阿拉伯芥生長之影響不同 27
二、 不同濃度S. coelicolor M145對阿拉伯芥生長之影響不同 27
三、 P. putida A7可誘導阿拉伯芥對Pst DC3000之系統性抗性 28
四、 S. coelicolor M145可誘導阿拉伯芥對Pst DC3000之系統性抗性 29
五、 P. putida A7 與 S. coelicolor M145 無法誘導 SA、JA 和 ET 相關基因阿拉伯芥突變株對 Pst DC3000 之系統性抗性 30
六、 SA、JA 與 ET相關基因受 Pst DC3000 感染後之表現情形會到 P. putida A7 前處理之調控 32
七、 SA、JA 與 ET相關基因受 Pst DC3000 感染後之表現情形會受到 S. coelicolor M145 前處理之調控 33
八、評估P. putida A7 與 S. coelicolor M145誘導阿拉伯芥抗性反應之長期保護效果 35
九、接種P. putida A7與 S. coelicolor M145後誘導阿拉伯芥生成茉莉酸 35
十、接種P. putida A7與 S. coelicolor M145後誘導阿拉伯芥生成水楊酸 36
伍、討論 38
陸、結論與未來發展 47
柒、 參考文獻 48
捌、 表 66
玖、 圖 67
圖一、本研究之實驗設計 67
圖二、處理不同濃度P. putida A7對阿拉伯芥生長之影響 68
圖三、處理不同濃度S. coelicolor M145 對阿拉伯芥生長之影響 69
圖四、 P. putida A7 與S. coelicolor M145 可促進阿拉伯芥生長 70
圖五P. putida A7誘導阿拉伯芥對Pst DC3000之抗性 71
圖六、S. coelicolor M145誘導阿拉伯芥對Pst DC3000之抗性 72
圖七、P. putida A7誘導之系統性抗性需要有功能正常的SA、JA 與 ET 訊息傳遞途徑與 NPR1 73
圖八、S. coelicolor M145誘導之系統性抗性需要有功能正常的SA、JA 與 ET 訊息傳遞途徑與 NPR1 74
圖九、阿拉伯芥中SA 相關基因表現對 Pst DC3000 之反應會受到在 P. putida A7 處理影響 76
圖十、阿拉伯芥中JA 相關基因表現對 Pst DC3000 之反應會受到在 P. putida A7 處理影響 78
圖十一、阿拉伯芥中 ET 相關基因表現對 Pst DC3000 之反應會受到在 P. putida A7 處理影響 80
圖十二、阿拉伯芥中SA 相關基因表現對 Pst DC3000 之反應會受到在 S. coelicolor M145 處理影響 82
圖十三、阿拉伯芥中JA 相關基因表現對 Pst DC3000 之反應會受到在 S. coelicolor M145 處理影響 84
圖十四、阿拉伯芥中 ET 相關基因表現對 Pst DC3000 之反應會受到在 S. coelicolor M145 處理影響 86
圖十五、評估 P. putida A7 與 S. coelicolor M145誘導阿拉伯芥抗性反應之長時間保護效果 88
圖十六、處理P. putida A7與 S. coelicolor M145之阿拉伯芥在感染Pst DC3000後茉莉酸含量變化 89
圖十七、處理P. putida A7與 S. coelicolor M145之阿拉伯芥在感染Pst DC3000後水楊酸含量變化 90
壹拾、 附錄 91
附表一、1/2 MS medium (1L) 配方 91
附表二、R5 medium配方 92
附表三、KBM medium 配方 93
Abbasi MK, Sharif S, Kazmi M, Sultan T, Aslam M (2011) Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosyst 145:159-168.
AbuQamar S, Moustafa K, Tran LSP (2017) Mechanisms and strategies of plant defense against Botrytis cinerea. Crit Rev Biotechnol 37:262-274.
Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816-2825.
Afek U, Aharoni N, Carmeli S. (1994). A possible involvement of gibberellic acid in celery resistance to pathogens during storage. Acta Hortic 381:583–87.
Al-Whaibi MH, Siddiqui MH, Al-Amri A, Basalah MO. (2010). Performance of faba bean under calcium and gibberellic acid application. IJPDB 4:60–63.
Amian AA, Papenbrock J, Jacobsen HJ, Hassan F (2011) Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crops 2:104-109.
Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 (6814):796-815.
Asai S, Rallapalli G, Piquerez SJM, Caillaud MC, Furzer OJ, Ishaque N, Wirthmueller L, Fabro G, Shirasu K, Jones JDG (2014) Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid. PLoS Pathog 10:1371-1385.
Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van Breusegem F, Hofte M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144 (4):1863-1877.
Baldwin EA. (2003). Coatings and other supplemental treatments to maintain vegetable quality. Postharvest Physiology and Pathology of Vegetables. Marcel Dekker, New York, 413–35
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233-266.
Bano A, Muqarab R (2016) Plant defence induced by PGPR against Spodoptera litura in tomato (Solanum lycopersicum L.). Plant Biol (Stuttg).
Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473-488.
Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044-1051
Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 8:11-18.
Berr A, Menard R, Heitz T, Shen WH (2012) Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cell Microbiol 14:829-839.
Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O''Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141-147.
Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327-1350.
Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubes J (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses.Plant Physiol 156:29-45.
Buell CR. (1998) Arabidopsis: A weed leading the field of plant-pathogen interactions. Plant Physiol 36 : 177- 186.
Caarls L, Pieterse CMJ, Van Wees SCM (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci. 6:170-181
Cane DE, He X, Kobayashi S, Omura S, Ikeda H (2006) Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase. J Antibiot (Tokyo) 59:471-479.
Cardinale M, Ratering S, Suarez C, Montoya AMZ, Geissler-Plaum R, Schnell S (2015) Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 181 22–32.
Cerny M, Novak J, Habanova H, Cerna H, Brzobohaty B (2016) Role of the proteome in phytohormonal signaling. Biochim Biophys Acta 1864:1003-1015.
Chan Z (2012) Proteomic responses of fruits to environmental stresses. Front Plant Sci 3:311.
Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284-295.
Citron CA, Barra L, Wink J, Dickschat JS (2015) Volatiles from nineteen recently genome sequenced actinomycetes. Org Biomol Chem 13:2673-2683.
Coelho SM, Peters AF, Charrier B, Roze D, Destombe C, Valero M, Cock JM (2007) Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406:152-170.
Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210-216.
Crow JR, Thomson RJ, Mander LN (2006) Synthesis and confirmation of structure for the gibberellin GA(131) (18-hydroxy-GA(4)). Org Biomol Chem 4:2532-2544.
Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826-833.
De Bruyne L, Hofte M, De Vleesschauwer D (2014) Connecting Growth and Defense: The emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant 7:943-959.
De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543-555
De Vleesschauwer D, Djavaheri M, Bakker PA, Hofte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148:1996-2012.
De Vleesschauwer D, Gheysen G, Hofte M (2013) Hormone defense networking in rice: tales from a different world. Trends Pharmacol Sci 18:555-565.
de Wit PJ (2007) How plants recognize pathogens and defend themselves. Cell Mol Life Sci 64:2726-2732.
Djavaheri M, Mercado-Blanco J, Versluis C, Meyer JM, Van Loon LC, Bakker PAHM (2012) Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis. Microbiologyopen 1:311-325.
Dong XN (2004) NPR1, all things considered. Current Opinion in Plant Biology 7 :547-552.
Eigenbrode SD, Rayor L, Chow J, Latty P (2000) Effects of wax bloom variation in Brassica oleracea on foraging by a vespid wasp. Entomol Exp Appl 97:161-166.
Esnault C, Dulermo T, Smirnov A, Askora A, David M, Deniset-Besseau A, Holland IB, Virolle MJ (2017) Strong antibiotic production is correlated with highly active oxidative metabolism in Streptomyces coelicolor M145. Sci Rep-Uk 7.
Filippi MCC, da Silva GB, Silva-Lobo VL, Cortes MVCB, Moraes AJG, Prabhu AS (2011) Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biol Control 58:160-166.
Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188
Fischer SE, Fischer SI, Magris S, Mori GB (2007) Isolation and characterization of bacteria from the rhizosphere of wheat. World J Microb Biot 23:895-903.
Flardh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7 :36-49.
Friedrich L, Vernooij B, Gaffney T, Morse A, Ryals J (1995) Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene. Plant Mol Biol 29:959-968
Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436-445.
Ghorbanpour M., Hatami M., Khavaz K. (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. TURK J BIOL 37 350– 360.
Gilbert RD, Johnson AM, Dean RA (1996) Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol Mol Plant P 48:335-346.
Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205-227.
Glazebrook J, Rogers EE, Ausubel FM (1997) Use of Arabidopsis for genetic dissection of plant defense responses. Annu Rev Genet 31:547-569.
González-Gallegos E, Laredo-Alcalá E, Ascacio-Valdés J, de Rodríguez DJ, Hernández-Castillo FD (2015) Changes in the production of salicylic and jasmonic acid in potato plants (Solanum tuberosum) as response to foliar application of biotic and abiotic inductors. AJPS 1785-1791
Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5 :355-377.
Gray WM (2004) Hormonal regulation of plant growth and development. PLoS Biol 2 :E311.
Hahn A, Harter K (2009) Mitogen-activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? Plant Physiol 149:1207-1210.
Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321-334
Heck S, Grau T, Buchala A, Metraux JP, Nawrath C (2003) Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction. Plant J 36:342-352.
Herrera-Vasquez A, Salinas P, Holuigue L (2015) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci. 6:171-180.
Hiltner L. (1904). Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderden berucksichtigung und Brache. Arb. Dtsch. Landwirtsch. Gesellschaft 98 59–78
Inbar E, Green SJ, Hadar Y, Minz D (2005) Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes. Microb Ecol 50 :73-81.
Jan AT, Azam M, Ali A, Haq QMR (2011) Novel approaches of beneficial Pseudomonas in mitigation of plant diseases - an appraisal. J Plant Interact 6 :195-205.
Jiang CH, Fan ZH, Xie P, Guo JH (2016) Bacillus cereus AR156 Extracellular Polysaccharides Served as a Novel Micro-associated Molecular Pattern to Induced Systemic Immunity to Pst DC3000 in Arabidopsis. Front Microbiol 7:664.
Jones JD, Dangl JL (2006) The plant immune system. Nature 444 :323-329.
Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152-2163.
Knoester M, Pieterse CMJ, Bol JF, Van Loon LC (1999) Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant Microbe In 12:720-727.
Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97 :2940-2945
Kwon YS, Ryu CM, Lee S, Park HB, Han KS, Lee JH, Lee K, Chung WS, Jeong MJ, Kim HK, Bae DW (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232 :1355-1370.
Krey T, Vassilev N, Baum C, Eichler-Lobermann B (2013) Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur J Soil Biol 55:124-130.
Langlois P, Bourassa S, Poirier GG, Beaulieu C (2003) Identification of Streptomyces coelicolor proteins that are differentially expressed in the presence of plant material. Appl Environ Microb 69:1884-1889.
Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Phys 48:251-275
Law JW, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, Goh BH, Lee LH (2017) The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol 8:3.
Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci 95:15837-15842
Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol 177 :965-976.
Leng P, Yuan B, Guo Y (2014) The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 65 :4577-4588.
Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RAM, Ritsema T, Pieterse CMJ (2009) Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149 (4):1797-1809.
Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67 :209-217.
Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol 10 :466-472.
Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541-556.
Mak AS, Jones BL (1976) The amino acid sequence of wheat beta-purothionin. Can J Biochem 54 :835-842
Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:178-190.
Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S. (1997) Association of nitrogenfixing plant promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44.
Martinez C, Pons E, Prats G, Leon J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37 :209-217.
Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus Species. Microb Ecol 54:543-552.
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao YD, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. P Natl Acad Sci 108:18512-18517.
Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Bioch 42:565-572.
Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481-489.
Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50:500-513.
Natsch A, Keel C, Pfirter HA, Haas D, Defago G (1994) Contribution of the global regulator gene gacA to persistence and dissemination of Pseudomonas fluorescens biocontrol strain CHA0 introduced into soil microcosms. Appl Environ Microbiol 60 :2553-2560
Nawrath C, Metraux JP (1999) Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393-1404
Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Gozdzicka-Jozefiak A (2014) Plant antimicrobial peptides. Folia Microbiol (Praha) 59 :181-196.
Nie P, Li X, Wang S, Guo J, Zhao H, Niu D (2017) Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front Plant Sci 8:238.
Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact 24:533-542.
Norman C, Howell KA, Millar AH, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol 134 :492-501.
Normanly J (2010) Approaching cellular and molecular resolution of ruxin biosynthesis and metabolism. Csh Perspect Biol 2:1559-1576.
Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:61-80
Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18:402-411.
Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318 :113-116.
Partida-Martinez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:100.
Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406 :731-734.
Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169 :325-336.
Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308-316.
Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489-521.
Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347-375.
Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits N, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580.
Platt A, Horton M, Huang YS, Li Y, Anastasio AE, Mulyati NW, Agren J, Bossdorf O, Byers D, Donohue K, Dunning M, Holub EB, Hudson A, Le Corre V, Loudet O, Roux F, Warthmann N, Weigel D, Rivero L, Scholl R, Nordborg M, Bergelson J, Borevitz JO (2010) The scale of population structure in Arabidopsis thaliana. PLoS Genet 6 :e1000843.
Pogany M, von Rad U, Grun S, Dongo A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J (2009) Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant Physiol 151:1459-1475.
Pospisilova J (2003) Participation of phytohormones in the stomatal regulation of gas exchange during water stress. Biol Plantarum 46:491-506.
Prime APG, Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062-1071.
Ranjan A, Vadassery J, Patel HK, Pandey A, Palaparthi R, Mithofer A, Sonti RV (2015) Upregulation of jasmonate biosynthesis and jasmonate-responsive genes in rice leaves in response to a bacterial pathogen mimic. Funct Integr Genomic 15:363-373.
Rensink WA, Buell CR (2004) Arabidopsis to rice. Applying knowledge from a weed to enhance our understanding of a crop species. Plant Physiol 135:622-629.
Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18 :40-54.
Rodrigues C, Vandenberghe LPD, de Oliveira J, Soccol CR (2012) New perspectives of gibberellic acid production: a review. Crit Rev Biotechnol 32:263-273.
Rodriguez-Gacio Mdel C, Matilla-Vazquez MA, Matilla AJ (2009) Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signal Behav 4:1035 - 1049
Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017-1026.
Salla TD, da Silva R, Astarita LV, Santarem ER (2014) Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants. Plant Physiol Biochem 85:14-20.
Santoro MV, Bogino PC, Nocelli N, Cappellari LD, Giordano WF, Banchio E (2016) Analysis of plant growth-promoting effects of fluorescent Pseudomonas strains isolated from mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front Microbiol 7:1085-1102.
Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Bioch 49:1177-1182.
Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655-11660.
Shigenaga AM, Argueso CT (2016) No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 56:174-189.
Singh NK, Kumar KR, Kumar D, Shukla P, Kirti PB (2013) Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut. PLoS One 8:e83963.
Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89-100.
Stanier RY, Palleron.Nj, Doudorof.M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159-271
Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117-2127.
Stein T, Hayen-Schneg N, Fendrik I. (1997) Contribution of BNF by Azoarcus sp. BH72 in Sorghum vulgare. Soil Biol Biochem 29:969–71.
Stintzi A, Heitz T, Prasad V, Wiedemannmerdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant pathogenesis-related proteins and their role in defense against pathogens. Biochimie 75:687-706.
Takahashi H, Kanayama Y, Zheng MS, Kusano T, Hase S, Ikegami M, Shah J (2004) Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant Cell Physiol 45:803-809.
Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clement C, Barka EA (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant Microbe Interact 25:241-249.
Thomma BPHJ, Penninckx IAMA, Broekaert WF, Cammue BPA (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63-68.
Timmermann T, Armijo G, Donoso R, Seguel A, Holuigue L, Gonzalez B (2017) Paraburkholderia phytofirmans PsJN protects Arabidopsis thaliana against a virulent strain of Pseudomonas syringae through the activation of induced resistance. Mol Plant Microbe Interact 30:215-230.
Ton J, Davison S, Van Wees SCM, Van Loon LC, Pieterse CMJ (2001) The arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol 125:652-661.
Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397-403.
van Loon LC, Bakker PA, Pieterse CM (1998a) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453-483.
van Loon LC, Bakker PAHM, Pieterse CMJ (1998b) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453-483.
Van Wees SC, Pieterse CM, Trijssenaar A, Van ''t Westende YA, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716-724.
Vankova R, Petrasek J, Zazimalova E, Kaminek M, Motyka V, Ludwig-Muller J (2014) Auxins and Cytokinins in Plant Development and Interactions with Other Phytohormones 2014. J Plant Growth Regul 33:709-714.
Verberne MC, Brouwer N, Delbianco F, Linthorst HJ, Bol JF, Verpoorte R (2002) Method for the extraction of the volatile compound salicylic acid from tobacco leaf material. Phytochem Anal 13:45-50.
Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86-96.
Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World J Microb Biot 20:235-244.
Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177-206.
Vos IA, Verhage A, Schuurink RC, Watt LG, Pieterse CM, Van Wees SC (2013) Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Front Plant Sci 4:539-549.
Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant P 71:3-17.
War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306-1320.
Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487-511
Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383-389.
Wildermuth H (1972) The surface structure of spores and aerial hyphae in Streptomyces viridochromogenes. Arch Mikrobiol 81:309-320
Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562-565.
Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despres C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639-647.
Xin XF, He SY (2013) Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol 51:473-498.
Yang HY, Chen CW (2009) Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: a case of double-edged sword. PLoS One 4:e7462.
Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1-4.
Yeats TH, Rose JKC (2013) The Formation and Function of Plant Cuticles. Plant Physiol 163:5-20.
You IS, Ghosal D, Gunsalus IC (1991) Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3''-flanking region. Biochemistry 30:1635-1641
Zhao YD, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306-309.
Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 10:1021-1030
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top