跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡佩蓉
研究生(外文):Pei-Jung Tsai
論文名稱:長期施用不同有機質肥料對設施內蕹菜連作障礙機制研究
論文名稱(外文):Studies on the impactsof long-term applications of different organic fertilizers on the mechanisms of continuous cropping obstacle of Ipomoea aquatica under the greenhouse condition
指導教授:黃良得黃良得引用關係
指導教授(外文):Lean-Teik Ng
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:139
中文關鍵詞:連作障礙生物分泌物微生物群落結構
外文關鍵詞:continuous cropping obstaclebiological exudatessoil microbial community structures
相關次數:
  • 被引用被引用:1
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
設施栽培短期葉菜類為臺灣北部有機蔬菜之主要生產方式,搭配有機質肥料的施用以生產安全自然的農產品。然而,設施內之單一作物連續密集栽培易造成連作障礙,導致作物產量下降,品質降低,加上不同有機質肥料的施用,除會改變土壤理化性質外,亦會影響土壤中根分泌物質量及微生物生態。本研究擬探討設施內長期施用不同有機質肥料對短期單一葉菜類的連續耕種後,土壤基本性質、生物分泌物質量及微生物生態之影響。實驗選用蕹菜 (Ipomoea aquatica) 作為試驗作物,而不同有機質肥料之處理分別為:牛糞堆肥 (cattle dung compost, CDC)、豬糞堆肥 (hog dung compost, HDC)、雞糞堆肥 (chicken dung compost, CHC)、大豆粕 (soybean meal, SBM)、豌豆苗殘體堆肥 (pea seedling residue compost, PRC) 及以上五種有機質肥料輪施 (rotational application, RA)。試驗設計為連續栽種蕹菜三作,每作生長期為28天後進行整株採收,休耕七天後施用有機質肥料並進行下一作栽種,試驗前取各小區土壤作為控制組。結果顯示,於長期施用不同有機質肥料的土壤連續栽種三作蕹菜後,其產量顯著下降,此表示有連作障礙的發生。雖然各連續耕種處理之土壤基本性質無明顯差異,但各酵素活性除尿素酶及芳香基硫酸單酯酶之外,其餘則隨栽種次數的增加而顯著降低。此外,連續栽種蕹菜後土壤中總酚類及總黃酮類的含量也有顯著變化;總酚類含量隨著栽種次數的增加而降低,而總黃酮類含量則隨之增加,推測連作障礙的發生可能與土壤中二次代謝物質量的改變有關。由變性梯度膠體電泳 (DGGE) 分析結果發現長期施用不同有機質肥料會改變土壤細菌與真菌群落的組成,且經連續耕種後各處理之土壤微生物群落量皆有顯著增加的情形。次世代定序之結果也發現連續栽種蕹菜三作後,施用大豆粕會造成土壤中的優勢菌屬改變,且細菌菌屬組成亦有明顯差異。本研究證明在長期施用不同有機質肥料的土壤中,二次代謝物質量與微生物群落的變化可能為造成蕹菜連作障礙發生的原因。
Facility cultivation of short-term leafy vegetables with organic fertilizer application was the main method of producing organic vegetables in northern Taiwan. However, intensive and continuous crop monoculture may easily lead to continuous cropping obstacle, and resulting in decreasing crop quantity and quality. Although the application of different organic fertilizers may improve soil chemical properties, it may also influence the profile of root exudates and the ecology of soil microorganisms. This study aimed to examine the effects of long-term organic fertilizer applications, on soil chemical properties, biological exudates and microbial community structures of soils which were continuously monocultured with leafy vegetables in the facility agriculture system. The organic fertilizers used in this study were cattle dung compost (CDC), hog dung compost (HDC), chicken dung compost (CDC), soybean meal (SBM), pea residue compost (PRC), and the rotation of the above five organic fertilizers. In this study, Ipomoea aquatica was used as the model crop, which was continuously cultured for three times with each crop cultivated for 28 days, and subsequently whole plant and soil samples were collected for analysis. Before each cropping, there was a period of seven (7) days resting, after applications of respective fertilizers for the different treatments, the I. aquatica seeds were sowed onto each plot. The results showed that continuous cropping with organic fertilizer applications caused significantly decreased in I. aquatica biomass, suggesting a cropping obstacle on the growth of I. aquatica. There was no difference in soil chemical properties between the periods of three crops; however, with the exception of urease and arylsulphatase, the enzyme activities of soils decreased with increasing cropping of I. aquatica. Futhermore, the total phenolic content in soils was significantly decreased, whereas the total flavonoid content increased, suggesting that cropping obstacle may be associated with the changes on the quantity and quality of secondary metabolites. Resilts of DGGE analysis showed that long-term application of different organic fertilizers can led to the changes in the composition of bacteria and fungi communities. Soil microbial populations after continuous cropping also appear to increase with increasing number of cropping. The results of next generation sequencing analysis also indicated that the continuous cropping of I. aquatica with application of soybean meal caused the changes in the dominant genus of microorganisms and the microbial composition in the soils. In summary, this study indicates that the changes in the contents of total phenolics and total flavonoids, as well as the microbial populations may have play an improtant role in the continuous cropping obstacle of I. aquatica cultivation in the controlled environment agriculture system.
誌謝 I
摘要 III
Abstract V
目錄 VII
表目錄 IX
圖目錄 X
附錄目錄 XIII
第一章 前言 1
第二章 前人研究 3
一、有機質肥料 3
二、生物分泌物 4
三、連作障礙 5
四、土壤酵素活性 6
五、土壤微生物群落結構 9
第三章 材料與方法 13
一、試驗材料與設計 13
二、土壤基本性質分析 17
三、生物分泌物含量分析 20
四、土壤酵素分析 26
五、微生物群落結構-DNA分子序列分析 34
六、統計分析 42
第四章 結果與討論 43
一、長期施用不同有機質肥料對連作系統中蕹菜產量之影響 43
二、長期施用不同有機質肥料對連作系統中土壤基本性質之影響 45
三、長期施用不同有機質肥料對連作系統中土壤酵素活性之影響 63
四、長期施用不同有機質肥料對連作系統中生物分泌物質量之影響 81
五、長期施用不同有機質肥料對連作系統中土壤微生物群落結構之影響 89
第五章 結論 104
第六章 參考文獻 105
附錄 122
王銀波、趙震慶。1994。有機與化學農法下土壤環境與養分收支之比較。土壤肥料試驗報告。台灣省政府農林廳。pp. 630-667。
王鐘和、林毓雯、丘麗蓉。2002。 有機質肥料在蔬菜栽培上之施用技術。作物有機栽培。行政院農業委員會,臺中,臺灣。pp. 59-69
王鐘和。2003。輪作的意義與要領。農業世界,239:28-31。
吳純宜、蔡永暭。2006。有機蔬菜連作與輪作組合之研究。高雄區農業改良場研究彙報,17:42-50。
林映儒、鄭智馨、曾聰堯、王尚禮、郭鴻裕。2011。平地長期林地之土壤性質與有機碳量蓄積。臺灣農業化學與食品科學,49:260-274。
林毓雯、王鐘和。2002。不同有機資材之分解與氮素礦化。作物有機栽培。行政院農業委員會,臺中,臺灣。pp. 105-115.
林毓雯、劉滄棽、王鐘和。2003。有機資材氮礦化特性研究。中華農業研究,52:178-190。
林滄澤。1991。不同有機物在土壤中養分釋放之研究。國立中興大學土壤環境科學系碩士論文,臺中,臺灣。73頁。
邱凡晟。2010。不同施肥管理對青蔥生長、土壤化學性質、酵素活性及微生物族群結構之影響。國立臺灣大學農業化學研究系碩士論文,臺北,臺灣。103頁。
張明暉、簡宣裕、劉禎祺。2005。有機質肥料介紹。合理化施肥專刊。行政院農業委員會試驗所,臺灣。pp. 255-266。
張淑賢。1995。有機資材利用之試驗研究現況與展望。有機質肥料合理施用技術研討會專刊,臺灣省農業試驗所。pp. 1-14。
張禮愷。1987。土壤酶學。科學出版社,北京,中國。292頁。
陳仁炫。1995。有機質肥量的添加對土壤磷有效性及礦化作用之影響。中國農業化學會誌,33:533-549。
陳仁炫、歐淑蒖。2005。不同有機質材之磷釋出特性及對土壤性質之影響。有機質肥料之施用對土壤與作物品質之影響研討會論文集。國立臺灣大學編印,p.19-46。
陳存澤、王斐能、鍾仁賜、張義宏。2012。不同的有機質肥料連用七年對土壤化學性質、酵素活性及微生物族群結構的影響。臺灣農業化學與食品科學,50:179-188。
陳尊賢。1995。長期施用豬糞堆肥對土壤中重金屬之累積及合理施用量之評估。50:200-214。
喻景權、杜堯舜。2000。蔬菜設施栽培可持續發展中的連作障礙問題。瀋陽農業大學學報,31:124-126。
楊明富。1991。水稻玉米輪作制度下施用堆肥對土壤肥力及作用產量之影響。國立中興大學土壤環境科學系碩士論文,臺北,臺灣。132頁。
楊承翰。2014。長期施用不同有機質肥料對溫室栽培作物土壤的微生物群落結構與化學性質之影響。國立臺灣大學農業化學系碩士論文,臺北,臺灣。106頁。
蔣婧、宋明華。2010。植物與土壤微生物在調控生態系統養分循環中的作用。植物生態學報,34:979-988。
鄧耀宗、黃伯恩。1993。臺灣永續農業之現況與展望。行政院農委會桃園區農業改良場,桃園,臺灣。pp. 1-8
鄧耀宗、蔡永暭、劉英杰。1998。輪作體系在有機農法中之應用。中華土壤肥料學會,農業與生態平衡研討會專刊,pp. 26-46。
鍾仁賜、葉美雲、張則周。1993。酸性土壤中施用有機物對作物生長及鋁錳之解毒作用。臺灣東部問題土壤改良研討會論文集。花蓮區農業改良場,花蓮,臺灣。pp. 192-217。
羅秋雄。2008。設施栽培有機蔬菜生產技術。有機作物栽培技術專刊。pp. 47-60。
羅秋雄、李宗翰。2010。設施蔬菜有機栽培長期施用有機質肥料對土壤性質及蔬菜生育影響。桃園區農業改良場研究彙報,67:17-32。
顧玉、成袁、吳金平。2011。設施栽培連作障礙克服技術的研究與應用。湖北農業科學,50:1-3。
Aggelides, S. M. and P. A. Londra. 2000. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresource Technology, 71: 253-259.
Allison, F J. 1973. Soil organic matter and its role in crop production. In: Development in Soil Science. Elsevier, Amsterdam, Netherlands. pp. 55-66.
Appiah, M. R., and Y. Ahenkorah. 1989. Arylsulphatase activity of different latosol soils of Ghana cropped to cocoa (Theobroma cacao) and coffee (Coffea canephora var. robusta). Biology and Fertility of Soils, 7: 186-190.
Atlas, M., and R. Bartha. 1998. Microbial evolution and biodiversity. Microbial Ecology. Menlo Park, Benjamin Cummings Science, 1008: 27-57.
Badri, D. V., and J. M. Vivanco. 2009. Regulation and function of root exudates. Plant, Cell and Environment, 32: 666-681.
Bais, H. P., T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57: 233-266.
Bandick A. K. and R. P. Dick. 1999. Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31: 1471-1479.
Batish, D. R., H. P. Singh, and S. Kaur. 2001. Crop allelopathy and its role in ecological agriculture. Journal of Crop Production, 4: 121-161.
Baydar, N. G., and H. Baydar. 2013. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Industrial Crops and Products, 41: 375-380.
Berendsen, R. L., C. M. Pieterse, and P. A. Bakker. 2012. The rhizosphere microbiome and plant health. Trends in Plant Sciences, 17: 478-486.
Bolton, H., L. F. Elliott, R. I. Papendick, and D. F. Bezdicek. 1985. Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biology and Biochemistry, 17: 297-302.
Bouwmeester, H. J., C. Roux, J. A. Lopez-Raez, and G. Becard. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends in Plant Science, 12: 224-230.
Bowles, T. M., V. Acosta-Martínez, F. Calderón, and L. E. Jackson. 2014. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry, 68: 252-262.
Brady, N. C. and R. R. Weil. 2002. Soil phosphorus and potassium. In: The nature and properties of soils. Prentice Hall, Upper Saddle River, NJ. pp. 593-637.
Brady, N. C. and R. R. Weil. 2016. The colloidal fraction: Seat of soil chemical and physical activity. In the Nature and Properties of Soils. V. R. Anthony, ed. Pearson Prentice Hall, New Jersey, USA. pp. 327-373.
Bulluck, L. R., M. Brosius, G. K. Evanylo, and J. B. Ristaino. 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 19: 147-160.
Burns, R. G. 1982. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biology and Biochemistry, 14: 423-427.
Burns, R. G., J. L. DeForest, J. Marxsen, R. L. Sinsabaugh, M. E. Stromberger, M. D. Wallenstein, M. N. Weintraub and A. Zoppini. 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry, 58: 216-234.
Caldwell, B. A. 2005. Enzyme activities as a component of soil biodiversity: a review. Pedobiologia, 49: 637-644.
Chaer, G. M., D. D. Myrold, and P. J. Bottomley. 2009. A soil quality index based on the equilibrium between soil organic matter and biochemical properties of undisturbed coniferous forest soils of the Pacific Northwest. Soil Biology and Biochemistry, 41: 822-830.
Chang, C., T. G. Sommerfeldt, and T. Entz. 1991. Soil chemistry after eleven annual application of cattle feelot manure. Journal of Environmental Quality, 20: 475-480.
Chang, C. C., M. H Yang, H. M. Wen, and J. C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10: 178-182.
Chang, E. H., R. S. Chung and F. N. Wang. 2008. Effect of different types of organic fertilizers on the chemical properties and enzymatic activities of an Oxisol under intensive cultivation of vegetables for 4 years. Soil Science and Plant Nutrition, 54: 587-599
Chaparro, J. M., D. V. Badri, M. G. Bakker, A. Sugiyama, D. K. Manter, and J. M. Vivanco. 2013. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLOS ONE, 8: e55731.
Chen, C., J. Zhang, M. Lu, C. Qin, Y. Chen, L.Yang, Q. Huang, J. Wang and Q. Shen. 2016. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biology and Fertility of Soils, 52: 455-467.
Cheynier, V., G. Comte, K. M. Davies, V. Lattanzio, and S. Martens. 2013. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72: 1-20.
Chivenge, P. P., H. K. Murwira, K. E. Giller, P. Mapfumo, and J. Six. 2007. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil and Tillage Research, 94: 328-337.
Coronado, C., J. S. Zuanazzi, C. Sallaud, J. C. Quirion, R. Esnault, H. P. Husson, A. Kondorosi, and P. Ratet. 1995. Alfalfa root flavonoid production is nitrogen regulated. Plant Physiology, 108: 533-542.
Corwin, D. L. and J. D. Rhoades. 1982. An improved technique for determining soil electrical conductivity-depth relations from above-ground electromagnetic measurements. Soil Science, 46: 517-520.
Das, A., R. Lal, D. P. Patel, R. G. Idapuganti, J. Layek, S. V. Ngachan, P. K. Ghosh, J. Bordoloi, and M. Kumar. 2014. Effects of tillage and biomass on soil quality and productivity of lowland rice cultivation by small scale farmers in north eastern India. Soil and Tillage Research, 143: 50-58.
Das, S. K., and A. Varma. 2010. Role of enzymes in maintaining soil health. In: Soil enzymology. Springer Berlin Heidelberg , Germany. pp. 25-42.
Diacono, M., and F. Montemurro. 2010. Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development, 30: 401-422.
Dick, R. P. 2011. Methods of soil enzymology. Soil Science Society of America, Madison, Wisconsin, USA. 395 pp.
Dinesh, R., V. Srinivasan, S. Hamza, and A. Manjusha. 2010. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresource Technology, 101: 4697-4702.
Drissner D., H. Blum, D. Tscherko, and E. Kandeler. 2007. Nine years of enriched CO2 changes the function and structural diversity of soil microorganisms in a grassland. European Journal of Soil Science, 58: 260-269.
Edmeades, D. C. 2003. The long-term effects of manures and fertilizers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems, 66: 165-180.
Eghball, B. 2002. Soil properties as influenced by phosphorus-and nitrogen-based manure and compost applications. Agronomy Journal, 94: 128-135.
Eghball, B., D. Ginting, and J. E. Gilley. 2004. Residual effects of manure and compost applications on corn production and soil properties. Agronomy Journal, 96: 442-447.
Evanylo, G., C. Sherony, J. Spargo, D. Starner, M. Brosius and K. Haering. 2008. Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agriculture, Ecosystems and Environment, 127: 50-58.
Fang, C., Y. Zhuang, T. Xu, Y. Li, Y. Li, and W. Lin. 2013. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression. Journal of Chemical Ecology, 39: 204-212.
Fenn, L. B., J. L. Tipton, and G. Tatum. 1992. Urease activity in two cultivated and non-cultivated arid soils. Biology and Fertility of Soils, 13: 152-154.
Follett, R. F., J. W. B. Stewart, C. V. Cole, and J. F. Power. 1987. Soil fertility and organic matter as critical components of production system. SSSA, ASA, and Madison, Wisconsin, USA. 166 pp.
Fortun, A., C. Fortun, and C. Ortega. 1989. Effect of farmyard manure and its humic fractions on the aggregate stability of a sandy–loam soil. European Journal of Soil Science, 40: 293-298.
Geisseler, D., W. R. Horwath, R. G. Joergensen, and B. Ludwig. 2010. Pathways of nitrogen utilization by soil microorganisms - a review. Soil Biology and Biochemistry, 42: 2058-2067.
González, M., E. Gomez, R. Comese, M. Quesada, and M. Conti. 2010. Influence of organic amendments on soil quality potential indicators in an urban horticultural system. Bioresource Technology, 101: 8897-8901.
Gutser, R., T. Ebertseder, A. Weber, M. Schraml and U. Schmidhalter. 2005. Short‐term and residual availability of nitrogen after long‐term application of organic fertilizers on arable land. Journal of Plant Nutrition and Soil Science, 168: 439-446.
Hafez, A. A. R. 1974. Comparative changes in soil-physical properties induced by admixtures of manures from various domestic animals. Soil Science, 118: 53-59.
Halstead, R. L., and R. B. McKercher. 1975. Biochemistry and cycling of phosphorus. In: Soil Biochemistry, Marcel Dekker, New York. Volume 4, pp. 31-63.
Harada, Y. 1990. Composting and application of animal waste. In: Extension Bulletin-ASPAC, Food and Fertilizer Technology Center, Taipei, Taiwan. 311: 20-31.
Hargreaves, J. C., M. S. Adl and P. R. Warman. 2008. A review of the use of composted municipal solid waste in agriculture. Agriculture, Ecosystems and Environment, 123: 1-14.
Hassan, S., and U. Mathesius. 2012. The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. Journal of Experimental Botany, 63: 3429-3444.
Havlin, J. L., J. D. Beaton, S. L. Tisdale, and W. L. Nelson. 2005. Soil fertility and fertilizers: An introduction to nutrient management. Upper Saddle River, New Jersey, Pearson Prentice Hall. Volume 515, pp. 97-141.
He, C. N., W. W. Gao, J. X. Yang, W. Bi, X. S. Zhang, and Y. J. Zhao. 2009. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant and soil, 318: 63-72.
Herencia, J. F., J. C. Ruiz, S. Melero, P. G. Galavís, and C. Maqueda. 2008. A short-term comparison of organic v. conventional agriculture in a silty loam soil using two organic amendments. The Journal of Agricultural Science, 146: 677-687.
Herlemann, D. P., M. Labrenz, K. Jürgens, S. Bertilsson, J. J. Waniek, and A. F. Andersson. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME journal, 5: 1571-1579.
Igalavithana, A. D., S. S. Lee, N. K. Niazi, Y. H. Lee, K. H. Kim, J. H. Park, D. H. Moon, and Y. S. Ok. 2017. Assessment of soil health in urban agriculture: Soil enzymes and microbial properties. Sustainability, 9: 310.
Inselsbacher, E., N. H. N. Umana, F. C. Stange, M. Gorfer, E. Schüller, K. Ripka, S. Zechmeister-Boltenstern, R. Hood-Novotny, and W. Wanek. 2010. Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biology and Biochemistry, 42: 360-372.
Inubushi, K., and S. Acquaye. 2004. Role of microbial biomass in biogeochemical processes in paddy soil environments. Soil Science and Plant Nutrition, 50: 793-805.
Jarvis, B. W., G. E. Lang, and R. K. Wieder. 1987. Arylsulphatase activity in peat exposed to acid precipitation. Soil Biology and Biochemistry, 19: 107-109.
Jones, D. L., A. Hodge, and Y. Kuzyakov. 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist, 163: 459-480.
Jordan, D., R. J. Kremer, W. A. Bergfield, K. Y. Kim, and V. N. Cacnio. 1995. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biology and Fertility of Soils, 19: 297-302.
Juo, A. S. R., and R. Lal. 1977. The effect of fallow and continuous cultivation on the chemical and physical properties of an Alfisol in western Nigeria. Plant and Soil, 47: 567-584.
Juszczuk, I. M., A. Wiktorowska, E. Malusá, and A. M. Rychter. 2004. Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant and Soil, 267: 41-49.
Kandeler, F., C. Kampichler, and O. Horak. 1996. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 23: 299-306.
Karaca, A., S. C. Cetin, O. C. Turgay, and R. Kizilkaya. 2010. Soil enzymes as indication of soil quality. In: Soil enzymology, Springer Berlin Heidelberg , Germany. pp. 119-148.
Kingery, W. L., C. W. Wood, D. P. Delaney, J. C. Williams, and G. L. Mullins. 1994. Impact of long-term land application of broiler litter on environmentally related soil properties. Journal of Environmental Quality, 23: 139-147.
Klindworth, A., E. Pruesse, T. Schweer, J. Peplies, C. Quast, M. Horn, and F. O. Glöckner. 2012. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic acids research, 41: e1.
Klose, S., and M. A. Tabatabai. 2002. Response of phosphomonoesterases in soils to chloroform fumigation. Journal of Plant Nutrition and Soil Science, 165: 429-434.
Knaak, N., A. A. Rohr, and L. M. Fiuza. 2007. In vitro effect of Bacillus thuringiensis strains and cry proteins in phytopathogenic fungi of paddy rice-field. Brazilian Journal of Microbiology, 38: 526-530.
Knapp, B. A., M. Ros, and H. Insam. 2010. Do composts affect the soil microbial community. In: Microbes at Work. Springer Berlin Heidelberg , Germany. pp. 271-291.
Kujala, T. S., J. M. Loponen, K. D. Klika, and K. Pihlaja. 2000. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry, 48: 5338-5342.
Lee, Y. and S. Lian. 2004. Content and variations of the major constituent in the organic manures in Taiwan. Journal of Agricultural Research of China, 46: 181-189. (in Chinese with English abstract)
Lemanowicz, J., and A. Siwik-Ziomek. 2010. Concentrations of available phosphorus and sulphur and activities of some hydrolytic enzymes in a luvisol fertilized with farmyard manure and nitrogen. Polish Journal of Soil Science, 63: 37-47.
Leyval, C., and J. Berthelin. 1993. Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biology and Fertility of Soils, 15: 259-267.
Li, J., J. M. Cooper, Z. A. Lin, Y. Li, X. Yang, and B. Zhao. 2015. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Applied Soil Ecology, 96: 75-87.
Liang, Q., H. Chen, Y. Gong, H. Yang, M. Fan, and Y. Kuzyakov. 2014. Effects of 15 years of manure and mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. European Journal of Soil Biology. 60: 112-119.
Livens, F. R. 1991. Chemical reactions of metals with humic material. Environmental Pollution, 70: 183-208.
López-Hernández, D., M. Nino, P. Nannipieri, and J. C. Fardeau. 1989. Phosphatase activity in Nasutitermes ephratae termite nests. Biology and Fertility of soils, 7: 134-137.
Mardis, E. R. 2008. Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9: 387-402.
McGill, W. B., K. R. Cannon, J. A. Robertson, and F. D. Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Canadian Journal of Soil Science, 66: 1-19.
Mclean, E.O. 1982. Soil pH and Lime Requirement. In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, A. L. Page (editor), pp. 199-224. American Society of Agronomy, Soil Science Society of America, Madison, USA.
Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15: 1409-1416.
Michalet, S., J. Rohr, D. Warshan, C. Bardon, J. C. Roggy, A. M. Domenach, S. Czames, T. Pommier, B. Combourieu, N. Guillaumaud, and F. Bellvert. 2013. Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy. Plant Physiology and Biochemistry, 72: 169-177.
Moeskops, B., D. Buchan, S. Sleutel, L. Herawaty, E. Husen, R. Saraswati, D. Setyorini, and S. De Neve. 2010. Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Applied Soil Ecology, 45: 112-120.
Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36.
Myers, R. M., S. G. Fischer, T. Maniatis, and L. S. Lerman. 1985. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Research, 13: 3111-3129.
Nannipieri, P., B. Ceccanti, S. Cervelli, and P. Sequi. 1974. Use of 0.1 M pyrophosphate to extract urease from a podzol. Soil Biology and Biochemistry, 6: 359-362.
Nannipieri, P., B. Ceccanti, S. Cervelli, and P. Sequi. 1978. Stability and kinetic properties of humus-urease complexes. Soil Biology and Biochemistry, 10: 143-147.
Nannipieri, P., L. Giagnoni, L. Landi, and G. Renella. 2011. Role of phosphatase enzymes in soil. In: Phosphorus in action. Springer Berlin Heidelberg , Germany. pp. 215-243.
Nannipieri, P., S. Grego, and B. Ceccanti. 1990. Ecological significance of the biological activity in soil. Soil Biochemistry, 6: 293-355.
Paz-Ferreiro J., C. Trasar-Cepeda, M. C. Leirós, S. Seoane, and F. Gil-Sotres. 2009. Biochemical properties in managed grassland soils in a temperate humid zone: modifications of soil quality as a consequence of intensive grassland use. Biological Fertilizer Soils, 45: 711-722.
Philippot, L., J. M. Raaijmakers, P. Lemanceau, and W. H. Van Der Putten. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11: 789-799.
Pokorný, J. 1991. Natural antioxidants for food use. Trends in Food Science and Technology, 2: 223-227.
Powlson, D. S. 1994. The soil microbial biomass: before, beyond and back. In: Beyond the Biomass-Compositional and Functional Analysis of Soil Microbial Communities. Wiley, Chichester, New York, USA. pp. 3-20.
Purcena, L. L., M. C. B. Di Medeiros, W. M. Leandro, and K. F. Fernandes. 2014. Effects of organic and conventional management of sugar cane crop on soil physicochemical characteristics and phosphomonoesterase activity. Journal of Agricultural and Food Chemistry, 62: 1456-1463.
Rajendran, L., and R. Samiyappan. 2008. Endophytic Bacillus species confer increased resistance in cotton against damping off disease caused by Rhizoctonia solani. Plant Pathology Journal, 7: 1-12.
Rastin, N., K. Rosenplänter, and A. Hüttermann. 1988. Seasonal variation of enzyme activity and their dependence on certain soil factors in a beech forest soil. Soil Biology and Biochemistry, 20: 637-642.
Renella, G., L. Landi, F. Valori, and P. Nannipieri. 2007. Microbial and hydrolase activity after release of low molecular weight organic compounds by a model root surface in a clayey and a sandy soil. Applied Soil Ecology, 36: 124-129.
Ritz, K., R. E. Wheatley, B. S. Griffiths. 1997. Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. Biology and Fertility of Soils, 24: 372-377.
Rhoades, J. D. 1982. Soluble salts. In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. A. L. Page (editor), pp. 167-178. American Society of Agronomy, Soil Science Society of America, Madison, USA.
Salazar S., L. E. Sanchez, J. Alvarez, A. Valverde, P. Galindo, J. M. Igual, A. Peix and I. Santa-Regina. 2011. Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37: 1123-1131.
Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74: 5463-5467.
She, S., J. Niu, C. Zhang, Y. Xiao, W. Chen, L. Dai, X. Liu, and H. Yin. 2017. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Archives of Microbiology, 199: 267-275.
Sheffield, V. C., D. R. Cox, L. S. Lerman, and R. M. Myers. 1989. Attachment of a 40-base-pair G+ C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proceedings of the National Academy of Sciences, 86: 232-236.
Šimek, M., D. W. Hopkins, J. Kalčík, T. Picek, H. Šantrůčková, J. Staňa and K. Travnik. 1999. Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications. Biology and Fertility of Soils, 29: 300-308.
Singh, R. P., and M. Agrawal. 2008. Potential benefits and risks of land application of sewage sludge. Waste Management, 28: 347-358.
Sommerfeldt, T. C. and C. Chang. 1985. Changes in soil properties under annual applications of feedlot manure and different tillage practices. Soil Science Society of America Journal, 49: 983-987.
Speir, T. W., and Ross, D. J. 1978. Soil phosphatase and sulphatase. Soil enzymes, 203: 197-250.
Stark, C., L. M. Condron, A. Stewart, H. J. Di, and M. O’Callaghan. 2007. Influence of organic and mineral amendments on microbial soil properties and processes. Applied Soil Ecology, 35: 79-93.
Stevenson, F. J. 1986. Cycle of soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley and Sons, Inc., New York. 448 pp.
Tabatabai, M. A. 1982. Soil enzymes. In: Page, A. L. (ed.). Methods of soil analysis, Part 2, Chemical and microbiological properties. American Society of Agronomy, Madison, Wisconsin, USA. pp. 903-947.
Tabatabai, M. A. 1994. Soil enzymes. In: Weaver, R. W. (eds.). Methods of soil analysis. American Society of Agromony, Madison, Wisconsin, USA. pp. 775-833.
Tabatabai, M. A., and J. M. Bremner. 1970. Arylsulfatase activity of soils. Soil Science Society of America Journal, 34: 225-229.
Turner, B. L., and P. M. Haygarth. 2005. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Science of the Total Environment, 344: 27-36.
Urbanová, M., J. Šnajdr, and P. Baldrian. 2015. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry, 84: 53-64.
Vardhan, S., A. K. Yadav, A. K. Pandey, and D. K. Arora. 2013. Diversity analysis of biocontrol Bacillus isolated from rhizospheric soil of rice-wheat (Oryza sativa-Triticum aestivum L.). India. Journal of Antibiotics, 66: 485-490.
Velmourougance K., M. V. Venugopalan, T. Bhattacharrharyya, D. Sarkar, D. K. Pal, A. Sahu, S. K. Ray, K. M. Nair, J. Prasad and R. S. Singh. 2013. Soil dehydrogenase activity in agro-ecological sub regions of black soil regions in India. Geoderma, 197: 186-192.
Walker, T. S., H. P. Bais, E. Grotewold, and J. M. Vivanco. 2003. Root exudation and rhizosphere biology. Plant Physiology, 132: 44-51.
Warren, G. P., D. C. Whitehead. 1988. Available soil nitrogen in relation to fractions of soil nitrogen and other soil properties. Plant and Soil, 112: 155-165.
Weston, L. A., and U. Mathesius. 2013. Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. Journal of Chemical Ecology, 39: 283-297.
Woese, C. R. 1987. Bacterial evolution. Microbiological Reviews, 51: 221-271.
Wu, L., D. K. Thompson, G. Li, R. A. Hurt, J. M. Tiedje, and J. Zhou. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology, 67: 5780-5790.
Xu, Z., G. Yu, X. Zhang, J. Ge, N. He, Q. Wang, and D. Wang. 2015. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Applied Soil Ecology, 86: 19-29.
Yeates, G. W., D. A. Wardle, K. S. Nicholson, K. I. Bonner, and R. N. Watson. 1999. Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biology and Biochemistry, 31: 1707-1720.
Yin, L. J., H. H. Lin, and Z. R. Xiao. 2010. Purification and characterization of a cellulase from Bacillus subtilis YJ1. Journal of Marine Science and Technology, 18: 466-471.
Yuan, B.C., and Yue, D. X. 2012. Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the loess plateau of China. Pedosphere, 22: 1-12.
Zaman, M., M. Matsushima, S. X. Chang, K. Inubushi, L. Nguyen, S. Goto, F. Kaneko, and T. Yoneyama. 2004. Nitrogen mineralization, N2O production and soil microbiological properties as affected by long-term applications of sewage sludge composts. Biology and Fertility of Soils, 40: 101-109.
Zhang, B., Li, X., Wang, F., Li, M., Zhang, J., Li, G., Zhang, L., Tu, W. and Zhang, Z. 2016. Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its ‘autotoxic circle’. Plant and Soil, 407: 307-322.
Zhu, S., J. M. Vivanco, and D. K. Manter. 2016. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Applied Soil Ecology, 107: 324-333.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top