跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 22:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭朝元
研究生(外文):Chao-Yuan Cheng
論文名稱:氣候變遷與高齡化對台灣家庭電力消費之經濟影響分析
論文名稱(外文):A Study on Residential Electricity Demand――Considering Climate Change and Aging Problem
指導教授:張靜貞張靜貞引用關係
指導教授(外文):Ching-Cheng Chang
口試日期:2017-06-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業經濟學研究所
學門:農業科學學門
學類:農業經濟及推廣學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:38
中文關鍵詞:電力需求全球暖化高齡化社會門檻迴歸一般化動差法
外文關鍵詞:Electricity DemandGlobal WarmingAging SocietyThreshold RegressionGeneralized Method of Moments
相關次數:
  • 被引用被引用:1
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全球暖化之下,台灣將面對海平面升高之危機,不僅會影響人們的生活型態,平均氣溫的上升也將改變台灣居民的能源需求,進而導致能源短缺之現象。近年來,由於全球暖化導致氣溫上升,民眾的冷卻需求增加亦造成電力需求隨之增加,導致台電之限電危機時有耳聞。除此之外,台灣尚面臨高齡化危機,高齡者逐漸增多,於2060年65歲以上人口估計將高達746萬人,而老年人口對於氣候變遷的適應能力下降,因此更需要空調設備調節,對於電力之需求會隨著暖化而增加。本研究旨在探討台灣面對全球暖化與高齡化之兩大問題時,家計部門電力需求之變化,以供未來電力政策之參考。
本研究採用1989年至2015年之月資料,以門檻迴歸之形式,搭配OLS及一般化動差法進行估計,比較估計結果,並檢定模型之門檻值、內生性、以及異質性問題。估計結果發現,模型之平均溫度存在3個門檻值,分別為23.642℃、25.622℃、27.035℃。其次,不論是OLS或是一般化動差法之結果,所得、溫度、老年人口及假日變數均與家計部門用電量呈現正相關,價格則為負相關。因此,本研究的實證結果可用來預測未來家計部門的電力需求成長,並協助制定相關調適策略。
Under the global warming, Taiwan will not just face the crisis of sea level rise. Global warming not only will affect people''s life patterns, the average temperature rising will also change the energy demand of Taiwanese residents, leading to energy shortages. In recent years, due to global warming, the household demand for cooling also increased the demand for electricity, leading to power crisis which heard from time to time. In addition, Taiwan is still facing the aging crisis, the elderly gradually increased until 2060, over 65 years old population will be as high as 7.46 million. While the ability to adapt to climate change decline for the elderly population, they will need more regulation of air conditioning equipment, the demand for electricity will increase with the warming. The purpose of this study is to investigate the impact of global warming and aging society on residential electricity demand in Taiwan.
In this study, we use the data from 1989 to 2015 to conduct the empirical estimation. We test the threshold value of temperature, endogeneity and heterogeneity of the model in the form of threshold regression, ordinary least squares (OLS) and generalized method of moments (GMM). The results show that there are three thresholds value for the average temperature in our model, which are 23.642℃, 25.622℃ and 27.035℃, respectively. The results of this study also show that income, temperature, number of elderly and holiday have positive impact on electricity demand, while price effect is negative. The result of this study can serve as the basis to forecast future electricity demand and design adaptation strategies for the residential sector.
目錄
謝辭 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第二章 文獻回顧 4
第三章 模型與資料處理 10
第一節 方法論 10
第二節 模型設定 15
第三節 資料處理 16
第四章 模擬結果分析 23
第五章 結論及建議 34
參考文獻 36
參考文獻
台灣電力公司(2017a)。歷年發電量佔比。取自http://www.taipower.com.tw/content/new_info/new_info-c37.aspx?LinkID=13
台灣電力公司(2017b)。經營實績--歷年售電量明細。取自http://www.taipower.com.tw/content/govern/govern01.aspx?MType=5&MSType=20
台灣電力公司(2017c)。經營實績—歷年平均電價。取自http://www.taipower.com.tw/content/govern/govern01.aspx?MType=5&MSType=20
行政院經濟建設委員會(2012)。中華民國2012年至2016年人口推計,臺北:行政院經濟建設委員會。
林幸君、李慧琳、許聖民、林國榮、李篤華、張靜貞、徐世勳(2015)。少子化與高齡化下的臺灣人口預測與經濟分析。臺灣經濟預測與政策,46(1),113-156。
國家實驗研究院台灣颱風洪水研究中心(2017)。大氣水文研究資料庫。取自https://dbahr.narlabs.org.tw/Default.aspx
黃世旻(2015)。新電價公式簡介。電力人,17,16-19。
De Cian, E., Lanzi, E., & Roson, R. (2013). Seasonal temperature variations and energy demand. Climatic Change, 116(3-4), 805-825.
Dell, J., Tierney, S., Franco, G., Newell, R. G., Richels, R., Weyant, J., & Wilbanks, T. J. (2014). Ch. 4: Energy supply and use. Melillo JM, Richmond T (TC), Yohe GW (eds) Climate Change Impacts in the United States: The Third National Climate Assessment. US Global Change Research Program.
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.
Grynszpan, D. (2003). Lessons from the French heatwave. The Lancet, 362(9391), 1169-1170.
Hajat, S., Kovats, R. S., & Lachowycz, K. (2007). Heat-related and cold-related deaths in England and Wales: who is at risk?. Occupational and environmental medicine, 64(2), 93-100.
Halicioglu, F. (2007). Residential electricity demand dynamics in Turkey. Energy economics, 29(2), 199-210.
Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of econometrics, 93(2), 345-368.
Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica: Journal of the Econometric Society, 1029-1054.
Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica: Journal of the Econometric Society, 1029-1054.
Holtedahl, P., & Joutz, F. L. (2004). Residential electricity demand in Taiwan. Energy economics, 26(2), 201-224.
Jamil, F., & Ahmad, E. (2011). Income and price elasticities of electricity demand: Aggregate and sector-wise analyses. Energy Policy, 39(9), 5519-5527.
Lim, K. M., Lim, S. Y., & Yoo, S. H. (2014). Short-and long-run elasticities of electricity demand in the Korean service sector. Energy Policy, 67, 517-521.
Nakajima, T., & Hamori, S. (2010). Change in consumer sensitivity to electricity prices in response to retail deregulation: a panel empirical analysis of the residential demand for electricity in the United States. Energy policy, 38(5), 2470-2476.
Narayan, P. K., & Smyth, R. (2005). The residential demand for electricity in Australia: an application of the bounds testing approach to cointegration. Energy policy, 33(4), 467-474.
Okajima, S., & Okajima, H. (2013). Estimation of Japanese price elasticities of residential electricity demand, 1990–2007. Energy Economics, 40, 433-440.
Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 335-346.
Roson, R., & Sartori, M. (2016). Estimation of climate change damage functions for 140 regions in the GTAP9 database.
Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599-607.
Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables. Econometrica: Journal of the Econometric Society, 393-415.
Wang, N., & Mogi, G. (2017). Industrial and residential electricity demand dynamics in Japan: How did price and income elasticities evolve from 1989 to 2014?. Energy Policy, 106, 233-243.
Worfolk, J. B. (2000). Heat waves: their impact on the health of elders. Geriatric Nursing, 21(2), 70-77.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top