跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳廸
研究生(外文):Chia-Ti Wu
論文名稱:表面電漿元件之模擬與應用
論文名稱(外文):Simulations and Applications of Surface Plasmon Polaritons Devices
指導教授:李允中李允中引用關係
指導教授(外文):Yeun-Chung Lee
口試日期:2017-07-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:表面電漿子波長解多工器電漿波導環狀諧振器有限元素法
外文關鍵詞:Surface plasmon polaritonsWavelength demultiplexerPlasmonic waveguidesRing resonatorFinite element method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文中提出了一種具備奈米環狀諧振器的「金屬-絕緣體-金屬」(Metal-insulator-metal, MIM)電漿波導的新型光學波長解多工器。將其傳輸特性採用有限元素法(Finite element method, FEM)進行數值模擬研究,並透過理論計算環狀諧振器的特徵波長。針對本文所提出的結構,研究發現環狀諧振器的兩個不同高階模式諧振透射率峰值的比率,分別係接近1310nm及1550nm兩個通訊波長比例。因此,透過改變環狀諧振器中材料折射率及其結構的相關幾何參數,即可容易調整解多工器的相關諧振波長。研究顯示,模擬結果與環狀諧振器的諧振理論結果非常吻合,亦即本文所提出的環狀結構將可在高度整合的電漿元件裝置中具有顯著性的應用發展潛力。
In this paper, we propose a novel wavelength demultiplexer based on metal-insulator-metal plasmonic waveguides with a nanoscale ring resonator. Its transmission characteristics are numerically studied using finite element method (FEM) simulations, and the eigenwavelengths of the ring resonator are theoretically calculated. For the proposed structure, we found that the ratio of the orders of resonant transmittance peaks for two different high-order modes of the ring resonator is close to the ratio of the two communication wavelengths 1310 and 1550 nm. These resonance wavelengths of the demultiplexer are effortlessly tuned by varying the refractive index of the material in the ring resonator and the geometrical parameters of the structure. The results simulated by FEM agree well with those from the resonant theory of the ring resonator. The presented structures will have significant potential applications in highly integrated plasmonic devices.
誌謝…………………………………………………………………………………………ⅰ
摘要…………………………………………………………………………………………ii
Abstract……………………………………………………………………………………iii
目錄…………………………………………………………………………………………ⅳ
圖目錄………………………………………………………………………………………vi
表目錄………………………………………………………………………………………x
符號說明……………………………………………………………………………………xi
第一章 緒論………………………………………………………………………………1
1.1 前言…………………………………………………………………………………1
1.2 研究目的……………………………………………………………………………3
1.3 論文內容……………………………………………………………………………4
第二章 文獻探討…………………………………………………………………………5
2.1 積體光學簡介………………………………………………………………………5
2.2 電磁波方程式………………………………………………………………………7
2.3 表面電漿子介紹……………………………………………………………………9
2.4 表面電漿子共振模態………………………………………………………………15
2.5 杜德模型(Drude''s model)…………………………………………………………18
2.6 表面電漿子波導元件與裝置……………………………………………………21
2.7 「金屬-絕緣體-金屬」(Metal-insulator-metal, MIM)波導結構…………………22
2.8 各種光學波長解多工器之設計…………………………………………………28
2.9 表面電漿子技術於生物感測之應用………………………………………………34
第三章 光學波長解多工器與數值模擬…………………………………………………35
3.1數值分析與有限元素方法模擬…………………………………………………35
3.1.1建立模型……………………………………………………………………38
3.1.2指定邊界條件………………………………………………………………39
3.1.3指定圓盤與波導之折射率…………………………………………………40
3.1.4建立有限元素法之網格……………………………………………………41
3.1.5執行1550 nm波長之入射光磁場路徑軌跡………………………………42
3.1.6執行1310 nm波長之入射光磁場路徑軌跡………………………………43
3.2具帶通濾波器之環狀諧振器傳輸特性…………………………………………44
3.3三分支光學波長解多工器設計…………………………………………………48
3.4光學波長解多工器之元件特性…………………………………………………51
第四章 結果與討論………………………………………………………………………52
4.1 共振波長與光學波長解多工器之分析……………………………………………52
4.2 研究結構之消光比與插入損失…………………………………………………63
4.3光學波長解多工器結構設計與頻譜關係之分析………………………………66
4.4製程忍受度分析…………………………………………………………………68
第五章 結論與建議………………………………………………………………………72
5.1結論…………………………………………………………………………………72
5.2建議…………………………………………………………………………………72
參考文獻……………………………………………………………………………………73
1. 中華民國統計資訊網。2017。什麼是「ICT產業」?如何計算?台北:主計總處。網址:http://www.stat.gov.tw/。上網日期:2017-06-06。
2. 王雅榕。2009。改善光相位解析式表面電漿共振生物感測器之靈敏度及表面電漿共振影像系統之發展。碩士論文。台北:國立陽明大學生醫光電研究所。
3. 何展燁。2010。聚焦型之方向性表面電漿激發。碩士論文。新竹:國立交通大學光電工程學系碩士班。
4. 吳民耀、劉威志。2006。表面電漿子理論與模擬。物理雙月刊 28(2): 486-496。
5. 林秉萱。2009。表面電漿共振材料之開發及應用。碩士論文。新竹:國立交通大學材料科學與工程學系碩士班。
6. 邱國斌、蔡定平。2006。金屬表面電漿簡介。物理雙月刊 28(2): 472-485。
7. 陳浩夫、江雅綾。2007。表面電漿波原理及其在細菌抗藥性檢測的應用。光連雙月刊 70: 12-15。
8. 陳穗斌、張慶瑞。2004。自旋相關碰撞之電子傳輸描述。物理雙月刊 26(4): 577-580。
9. 陳穗斌。2009。『等效平均自由徑模型』簡介。台灣磁性技術協會會訊 49: 9-13。
10. 彭江德。1993。光電子技術基礎。初版,21-30。台北:儒林圖書。
11. 楊自森、吳見明、蔡旻龍、莊淳宇、崔豫笳、許志楧。2005。分子生醫光電科學與技術。物理雙月刊 27(5): 670-686。
12. 廖高崧。2012。金屬-介質-金屬波導結構的表面電漿分光器之研究。碩士論文。新竹:國立交通大學光電工程學系碩士班。
13. 潘明陽。2011。次波長表面電漿子波導元件的製作與量測。碩士論文。基隆:國立臺灣海洋大學光電科學研究所。
14. 蕭閔元。2012。SOI漸變式非對稱波導定向耦合極化分光器。碩士論文。高雄:國立中山大學光電工程學系碩士班。
15. 賴國瑋。2011。波導模態共振之元件應用。碩士論文。新竹:國立交通大學電子工程學系電子研究所碩士班。
16. 簡汎清、邱國智、林俊佑、易政男、陳顯禎。2007。奈米電漿子感測技術於生物分子之功能分析。科儀新知 28(4): 37-49。
17. 羅友成。2015。異相性混合電漿子波導。碩士論文。台中:國立中興大學物理學研究所。
18. Barnes, W. L. 2006. Surface plasmon–polariton length scales: a route to sub-wavelength optics. Journal of optics A: pure and applied optics 8: 87-93.
19. Barnes, W. L., A. Dereux, and T. W. Ebbesen. 2003. Sruface plasmon subwavelength optics. Nature 424(6950): 824-830.
20. Berini, P. 2000. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phs. Rev. B 61: 10484-10503.
21. Boltasseva, A., T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi. 2005. Integrated optical components utilizing long-range surface plasmon polaritons. J. Lightwave Technol. 23: 413-422.
22. Bozhevolnyi, S. I. 2006. Effective-index modeling of channel plasmon polaritons. Opt. Express 14: 9467-9476.
23. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, and T. W. Ebbesen. 2005. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95: 046802.
24. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen. 2006. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440: 508-511.
25. Chen, P., R. Liang, Q. Huang, Z. Yu, an X. Xu. 2011. Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure. Opt. Express 19: 7633-7639.
26. Dionne, J., L. Sweatlock, H. Atwater, and A. Polman. 2006. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(3): 035407.
27. Han, Z. H., E. Forsberg, and S. He. 2007. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon. Technol. Lett. 19(2): 91-93.
28. Hoffman, G. B. and R. M. Reano. 2008. Vertical coupling between gap plasmon waveguides. Opt. Express 16: 12677-12687.
29. Holmgaard, T. and S. I. Bozhevolnyi. 2007. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B 75: 245405.
30. Homola, J., S. S. Yee and G. Guglitz. 1999. Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical 54(1): 3-15.
31. Kim, J. T., J. J. Ju, S. Park, M. S. Kim, S. Koo Park, and M. H. Lee. 2008. Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt. Express 16: 13133-13138.
32. Kou, Y. and X. Chen. 2011. Multimode interference demultiplexers and splitters in metal-insulator-metal waveguides. Opt. Express 19: 6042-6047.
33. Krasavin, A. V. and A. V. Zayats. 2007. Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl. Phys. Lett. 90: 211101.
34. Krasavin, A. V. and A. V. Zayats. 2008. Three-dimentional numerical modeling of photonic integration with dielectric-load SPP waveguides. Phys. Rev. B 78: 045425.
35. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen. 2002. Beaming light from a subwavelength aperture. Science 297(5582): 820-822.
36. Lin, X. and X. Huang. 2009. Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J. Opt. Soc. Am. B 26(7): 1263-1268.
37. Lin, X. S. and X. G. Huang. 2008. Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23): 2874-2876.
38. Lu, F., G. Li, K. Li, Z. Wang, and A. Xu. 2012. A compact wavelength demultiplexing structure based on arrayed MIM plasmonic nano-disk cavities. Opt. Commun. 285(24): 5519-5523.
39. Lu, H., X. Liu, Y. Gong, D. Mao, and G. Wang. 2011. Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides. J. Opt. Soc. Am. B 28(7): 1616-1621.
40. Lu, H., X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong. 2010. Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt. Express 18: 17922-17927.
41. Mei, X., X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin. 2010. A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities. J. Opt. Soc. Am. B 27(12): 2707-2713.
42. Moon, K., T. W., Lee, Y. J., Lee and S. H., Kwon. 2017. A metal-insulator-metal deep subwavelength cavity based on cutoff frequency modulation. Appl. Sci. 7(1): 86.
43. Pile, D. F. P. and D. K. Graotnev.2005. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Opt. Lett. 30(10): 1186-1188.
44. Popovic, Z. and B. D. Popovic. 1999. Introductory Electromagnetics. 1rd ed., 359-381. New Jersey: Prentice Hall.
45. Puiu, M. and C. Bala. 2016. SPR and SPR imaging: recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors 16(6): 870.
46. Reinhardt, C., S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi.2006. Laser-fabricated dielectric optical components for surface plasmon polaritons. Opt. Lett 31: 1307-1309.
47. Sapling Learning. 2017. Electromagnetic spectrum. Available at: https://sites.google.com/site/chempendix/em-spectrum. Accessed 23 June 2017.
48. Singh, P. 2016. SPR Biosensors: Historical perspectives and current challenges. Sensors and Actuators B: Chemical 229(28): 110-130.
49. Slater, J. C. and N. H. Frank. 1969. Electromagnetism. 1rd ed., 129-147. New York: Dover Publications.
50. Steinberger, B., A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn. 2006. Dielectric stripes on gold as surface plasmon waveguides. Appl. Phys. Lett. 88: 094104.
51. Stoja, E., & Frezza, F. 2013. Metal-Insulator-Metal (MIM) plasmonic waveguide based directional couplers operating at telecom wavelengths. In UCMMT 2013 - 2013 6th UK, Europe, China Millimeter Waves and THz Technology Workshop [6641555] IEEE Computer Society. DOI: 10.1109/UCMMT.2013.6641555
52. Tao, J., X. Huang, and J. Zhu. 2010. A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. Opt. Express 18: 11111-11116.
53. Tao, J., X. Huang, X. Lin, Q. Zhang, and X. Jin. 2009. A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple teeth-shaped structure. Opt. Express 17: 13989-13994.
54. The University of Oxford Department of Physics. 2017. The drude and sommerfeld models of metals. at: http://www2.physics.ox.ac.uk. Accessed 23 June 2017.
55. Wang, T., X. Wen, C. Yin, and H. Wang. 2009. The transmission characteristics of surface plasmon polaritons in ring resonator. Opt. Express 17: 24096-24101.
56. Wikipedia. 2017. Drude model. at: https://en.wikipedia.org/. Accessed 23 June 2017.
57. Willets, K. A. and R. P. Van Duyne. 2007. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry 58: 267-297.
58. Wolff, I. and N. Knoppik. 1971. Microstrip ring resonator and dispersion measurement on microstrip lines. Electron. Lett. 7(26): 779-781.
59. Wu, C. T., C. C., Huang, and Y. C., Lee. 2017. Plasmonic wavelength demultiplexer with a ring resonator using high-order resonant modes. Appl. Opt. 54(14): 4039-4044.
60. Wu, Y. D. 2014. High transmission efficiency wavelength division multiplexer based on metal-insulator-metal plasmonic waveguides. J. Lightwave Technol. 32: 4844-4848.
61. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin. 2005. Nano-optics of surface plasmon polaritons. Phys. Rep.: 408:131-314.
62. Zhan, G. Z., R. S. Liang, H. T. Liang, J. Luo, and R. Zhao. 2014. Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities. Opt. Express 22: 9912-9919.
63. Zhang, X. Y., A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley. 2010. Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal Strip waveguides. Opt. Express 18: 18945-18959 .
64. Zhu, J., X. Huang, and X. Mei. 2011. Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths. IEEE Trans. Nanotechnol. 10(5): 1166-1171.
65. Zia, R., M. D. Selker, P. B. Catrysse, and M. L. Brongersma. 2004. Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21(12): 2442-2446.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 4. 吳民耀、劉威志。2006。表面電漿子理論與模擬。物理雙月刊 28(2): 486-496。
2. 4. 吳民耀、劉威志。2006。表面電漿子理論與模擬。物理雙月刊 28(2): 486-496。
3. 6. 邱國斌、蔡定平。2006。金屬表面電漿簡介。物理雙月刊 28(2): 472-485。
4. 6. 邱國斌、蔡定平。2006。金屬表面電漿簡介。物理雙月刊 28(2): 472-485。
5. 7. 陳浩夫、江雅綾。2007。表面電漿波原理及其在細菌抗藥性檢測的應用。光連雙月刊 70: 12-15。
6. 7. 陳浩夫、江雅綾。2007。表面電漿波原理及其在細菌抗藥性檢測的應用。光連雙月刊 70: 12-15。
7. 8. 陳穗斌、張慶瑞。2004。自旋相關碰撞之電子傳輸描述。物理雙月刊 26(4): 577-580。
8. 8. 陳穗斌、張慶瑞。2004。自旋相關碰撞之電子傳輸描述。物理雙月刊 26(4): 577-580。
9. 11. 楊自森、吳見明、蔡旻龍、莊淳宇、崔豫笳、許志楧。2005。分子生醫光電科學與技術。物理雙月刊 27(5): 670-686。
10. 11. 楊自森、吳見明、蔡旻龍、莊淳宇、崔豫笳、許志楧。2005。分子生醫光電科學與技術。物理雙月刊 27(5): 670-686。
11. 16. 簡汎清、邱國智、林俊佑、易政男、陳顯禎。2007。奈米電漿子感測技術於生物分子之功能分析。科儀新知 28(4): 37-49。
12. 16. 簡汎清、邱國智、林俊佑、易政男、陳顯禎。2007。奈米電漿子感測技術於生物分子之功能分析。科儀新知 28(4): 37-49。