跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳裕夫
研究生(外文):Yu-Fu Chen
論文名稱:透過調控聚苯胺傳導層之疏水性提升固態離子選擇電極感測性能
論文名稱(外文):Tuning the Hydrophobicity of Polyaniline Solid Contact forEnhancing the Performance of a Solid-State Ion-Selective electrode
指導教授:陳林祈
指導教授(外文):Lin-Chi Chen
口試日期:2017-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:93
中文關鍵詞:人體電解質多元素離子選擇電極陣列全固態式離子電子傳導層polyaniline親疏水性網印式參考電極抗蛋白質吸附
外文關鍵詞:Human electrolytemulti-element ion selective electrode arrayall solid stateion to electron transducerpolyanilinehydrophobicscree-printed reference electrodeanti- protein adsorption
相關次數:
  • 被引用被引用:2
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
開發固態式離子選擇電極時會面臨離子電子轉移障礙與水層效應(water layer effect)等問題,這些現象使得電極在感測離子時電位訊號不穩定。為改善此一現象,介於選擇薄膜與電極之間的離子電子傳導層因應而生。本研究以導電高分子聚苯胺作為本次研究離子選擇電極之離子電子傳導層,期待聚苯胺之高電導性以及高離子電子移動率對電極之感測性能有增益效果。本研究第一部分為聚苯胺離子電子傳導層之表面結構分析。實驗結果顯示不同電鍍掃描速率:10,20,50,100 mV/s (於本研究中以PANI10,PANI20,PANI50,PANI100代稱)會造成離子選擇電極之親疏水性不同。其中電鍍時間較長之聚苯胺(PANI10)結構緻密並有許多微環摻雜其中,接觸角量測結果達到138度。相比於電鍍時間較短之聚苯胺材料(PANI100)接觸角提高了1.84倍,可見摻雜微環的緻密結構可使聚苯胺疏水性提高以減少水層的滲入,如此則能提高電極在感測時之穩定性。本研究第二部分為聚苯胺傳導層材料之性能探討,在進行二階段的計時電位法量測中,PANI10比起PANI100減少了96%的電位飄移,可見電鍍時間較長之PANI10具有較高的電位穩定性以及電容值。本研究的第三部分為電極感測性能部分,PANI10-鉀離子選擇電極所呈現之鉀離子靈敏度為51.4 mV/decade,偵測極限達10-5M。相較於PANI100-鉀離子選擇電極(靈敏度44.6 mV/decade,偵測極限10-5M) 表現還更好,推論聚苯胺傳導層會隨著其電鍍時間的不同而影響電極之電導性及靈敏度表現。最後,將鈉、鉀、氯、鈣等四個離子與參考電極整合在微型試片上共同感測,實驗結果顯示:PANI10-鈉離子選擇電極於標準液內量測之偵測極限可達到10-6M,相較於PANI100-鈉離子選擇電極的10-5M表現還更好。而鉀、氯、鈣離子選擇電極也呈現同樣的趨勢,故可推測電鍍時間較長之聚苯胺由於其表面較疏水且電容值較高,導致其選擇電極具有較高的靈敏度以及較低的偵測極限。本研究第四部分為離子選擇電極陣列置入牛血清白蛋白中實測。由於感測器長時間與血液接觸其蛋白質會吸附於電極表面,此些吸附過程會大大影響量測時之穩定度。本研究利用修飾添加物之方法探討離子選擇電極陣列在修飾前後之電位飄移程度,實驗結果發現鉀離子選擇電極較不被蛋白質吸附影響其感測效果,氯離子選擇電極則因為蛋白質吸附影響其在BSA當中的感測效果,故本論文探討三種修飾添加物之方式:只修飾F127在參考電極表面、只修飾F127在工作電極表面、參考電極與工作電極表面上皆修飾上F127。由實驗結果得知在參考電極表面上修飾F127可增加實驗之重複性、減少實驗誤差,但對受蛋白質吸附而影響感測效果之電極沒有增益效果。而單在工作電極修飾上F127可以提升電極抗蛋白質吸附能力,只是三重複之實驗誤差卻相當的大。最後,由於近年來人體機能之相關議題隨著科技發展而逐漸被重視,其應用在臨床醫學上日益重要。本研究以可線上監控之微型離子選擇試片為開發目標,將四種離子工作電極(鈉、鉀、氯、鈣)與參考電極整合在同一試片上以達到電極之微型化。
A solid-contact ion-selective electrode (SC-ISE) is a miniature, planar electrochemical ion sensing device and features a laminated structure of ion-selective electrode. The sensitivity and detection limit of an SC-ISE are considerably influenced by its solid contact layer, which should have sufficient high hydrophobicity to prevent a water-layer effect. However, study related to tuning the hydrophobicity of a solid contact layer for improving ISE performance has not been reported. In this study, we choose a polyaniline (PANI)-based solid-contact K+ ISE as a model system, and we assume that the structure of PANI can be controlled by its electrodeposition rate. Furthermore, the difference in structure of PANI can result in different hydrophobicity and thus lead to different ion-sensing performance. PANI was electrodeposited onto a screen-printed carbon electrode (SPCE) with different CV scanning rates (10, 20, 50, and 100 mV/s) between -0.1 V and + 0.9V for 5 cycles. Afterward, a K+ PVC ISM was dropped coated on the PANI/SPCE to result in a K+ SC-ISE. SEM pictures confirm that different CV deposition rates give different surface structures for PANI, which then causes the difference in surface hydrophobicity of PANI, as evident with contact angle. It is found that the smaller CV deposition rate is, the larger the contact angle is obtained. Accordingly, a PANI solid contact prepared with a smaller deposition rate results in better ion-sensing performance. Advanced study indicates that a smaller CV deposition rate shows higher electrochemical capacitance, lower charge-transfer resistance of PANI, too. In conclusion, the PANI solid contact layer’s hydrophobicity can be enhanced by decreasing the CV deposition rate, which can improve ion-sensing sensitivity and detection limit accordingly. Finally, the ion-selective electrode array was placed in the bovine serum albumin (BSA) simulated from human serum concentration. As the sensor bathed in the BSA for a long time and its protein will be adsorbed on the electrode surface. The adsorption process will greatly affect the stability of the measurement. In this study, the effect of modified additive on the potential drift of the ion selective electrode array was studied. The results showed that the potassium ion selective electrode was not affected by protein adsorption. The chloride ion selective electrode was influenced by protein adsorption. In this part, we explore three modifications of the additive: F127 is modified on the surface of the reference electrode only, F127 is modified on the surface of the working electrode only, and F127 is modified on the surface of the reference electrode and the working electrode. It is found that the modification of F127 on the surface of the reference electrode can increase the reproducibility of the experiment and reduce the experimental error. However, modification of F127 on the surface of the reference electrode does not help with anti-protein adsorption. In recent years, the related issues of human care have been paid more attention with the development of science and technology. Its application is becoming more and more important in clinical medicine. In order to avoid the high frequency of blood testing and the electrode production cost, the multiple ion selective electrode array (sodium, potassium, chlorine and calcium) is integrated with the reference electrode in the same piece.
致謝 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
符號說明 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 研究架構 5
第二章 文獻回顧 7
2.1 離子電子傳導層之介紹 7
2.2 電鍍聚苯胺材料之結構與性能探討 9
2.2.1 聚苯胺材料之介紹 9
2.2.2 聚苯胺之表面結構對感測性能影響 11
2.3 鈉、鉀、氯、鈣離子在人體內之功能與濃度平衡 14
2.4 固態式離子選擇電極陣列 16
2.4.1 離子選擇電極感測原理 16
2.4.2離子載體之功能 18
2.4.3 離子選擇電極之水層效應 21
2.4.4 微型離子選擇電極之開發 23
第三章 材料與實驗方法 26
3.1 材料與儀器 26
3.1.1實驗儀器與設備 26
3.1.2實驗藥品 28
3.2 實驗方法 30
3.2.1 四元素網版印刷電極陣列製作 30
3.2.2 離子電子傳導層製備 32
3.2.3 離子選擇薄膜製備 33
3.3 電化學分析方法 34
3.3.1 開環電位量測 34
3.3.2 循環伏安分析 34
3.3.3 電化學阻抗頻譜分析 34
3.3.4 計時電位法 35
3.4 表面結構與親疏水性測試 36
3.4.1 掃描式電子顯微鏡 36
3.4.2 接觸角測試 36
第四章 結果與討論 37
4.1 電鍍掃描速率對聚苯胺表面特徵之影響 37
4.1.1 掃描式電子顯微鏡之材料表面分析 37
4.1.2 接觸角分析 40
4.1.3 水層效應 43
4.2電鍍掃描速率對聚苯胺傳導層之電化學性能影響 46
4.2.1 循環伏安法 46
4.2.2 離子選擇電極穩定度測試 49
4.2.3 電容分析 54
4.2.4 電荷轉移阻抗分析 57
4.2.5 聚苯胺傳導層材料之總結 60
4.3 聚苯胺傳導層之表面結構對電極感測性能影響 62
4.3.1 靈敏度分析 62
4.3.2 離子選擇電極之偵測極限 68
4.3.3 離子選擇電極之選擇性分析 71
4.3.4離子選擇電極陣列之使用壽命 73
4.4 離子選擇電極陣列於混和液中實測 76
4.4.1 離子選擇電極陣列於BSA混合液中實測 76
4.4.2 離子選擇電極陣列於電極表面修飾F127之探討 79
第五章 結論 82
5.1 綜合討論 82
5.2 結論 84
第六章 參考文獻 85
第七章 附錄 93
7.1 XPS分析 93
陳志豪。2015。以共聚物 Pluronic F127 修飾網版印刷式鈉離子選擇電極之研究。碩士論文。台北:臺灣大學生物產業機電工程學系。

Philippe Bühlmann “Rational design of all-solid-state ion-selective electrodes and reference electrodes” Trends in Analytical Chemistry 76 (2016) 102–114

Sebastian Golczak “Comparative XPS surface study of polyaniline thin films “Solid State Ionics 179 (2008) 2234–2239

Huang Mei-Rong, GU Guo-Li, DING Yong-Bo, FU Xiao-Tian, LI Rong-Gui.” Advanced Solid-Contact Ion Selective Electrode Based on Electrically Conducting Polymers.” Chin J Anal Chem, 40, (2012), 1454–1460.

Sadanand Pandey “Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review.” Journal of Science: Advanced Materials and Devices 1, (2016), 431-453

Carlos Eduardo Cava “Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor” Sensors and Actuators B 245 (2017) 25–33

J. A. Owen “A Comparison of plasma electrolyte and urea in healthy persons and in hospital patients.” Clinica Chemica Acta (1968)

Hopkins, W.G. and N.P. Hüner. Introduction to plant physiology. Wiley New York( 2009)

Ernö Lindner , Róbert E. Gyurcsány i” Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes,” Solid State Electrochem (2009) 13:51–68

Johan Bobacka. ”Conducting Polymer-Based Solid-State Ion-Selective Electrodes” Electrolysis (2005)

Wang, J., Z. Li, G. Fan, H. Pan, Z. Chen and D. Zhang. “Reinforcement with graphene nanosheets in aluminum matrix composites.” Scripta Materialia. (2012) 66, 594-597

Jianfeng Ping, Yixian Wang, Jian Wu and Yibin Ying.” Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer” Electrochemistry Communications 13 (2011) 1529–1532

Zhanna A. Boeva and Tom Lindfors. “Few-layer graphene and polyaniline composite as ion-to-electron transducer in silicone rubber solid-contact ion-selective electrodes” Sensors and Actuators B 224 (2016) 624–631

Amr M. Mahmoud, Mohamed K. Abd El-Rahman, Mohamed R. Elghobashy .” Carbon nanotubes versus polyaniline nanoparticles; which transducer offers more opportunities for designing a stable solid contact ion-selective electrode” Journal of Electroanalytical Chemistry 755 (2015) 122–126

Bobacka, J. "Conducting Polymer-Based Solid-State Ion-Selective Electrodes." Electroanalysis 18: (2006) 7-18.
Cha, M. J., J. H. Shin, B. K. Oh, C. Y. Kim, G. S. Cha, D. S. Shin and B. Kim. "Asymmetric Cellulose-Acetate Membrane-Based Carbonate-Selective and Chloride-Selective Electrodes." Analytica Chimica Acta (1995), 315, 311-319.

Puntener, M., M. Fibbioli, E. Bakker and E. Pretsch. "Response and diffusion behavior of mobile and covalently immobilized H+-ionophores in polymeric membrane 92 ion-selective electrodes." Electroanalysis (2002), 14(19-20): 1329-1338.

Cha, G. S., D. Liu, M. E. Meyerhoff, H. C. Cantor, A. R. Midgley, H. D. Goldberg and R. B. Brown. "Electrochemical Performance, Biocompatibility, and Adhesion of New Polymer Matrices for Solid-State Ion Sensors." Analytical Chemistry (1991), 63(17): 1666-1672.

W. Qin.” Solid-contact K+-selective electrode based on three-dimensional molybdenum sulfide nanoflowers as ion-to-electron transducer” Sensors and Actuators B 234 (2016) 80–83

Francisco J. Andrade” Characterization of a new ionophore-based ion-selective electrode for the potentiometric determination of creatinine in urine.” Biosensors and Bioelectronics 87 (2017) 587–592

Zhao, W., Y. Su, C. Li, Q. Shi, X. Ning and Z. Jiang. "Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent." Journal of Membrane Science (2008), 318(1-2): 405-412

Renneboog, B., W. Musch, X. Vandemergel, M. U. Manto and G. Decaux (2006). "Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits." Am J Med 119(1): 71 e71-78.

Vazquez, M., J. Bobacka, A. Ivaska and A. Lewenstam. "Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes." Sensors and Actuators B-Chemical (2002), 82(1): 7-13.

Nikolskii, B.P. and E.A. Materova. 1985. “Solid Contact in Membrane Ion-Selective Electrodes”. Ion Sel Electrode R., 7(1): 3-39.

Thomas J.” Disagreement between ion selective electrode direct and indirect sodium measurements: Estimation of the problem in a tertiary referral hospital.” Journal of Critical Care (2012) 27, 326.e9–326.e16

Erno Lindner. “Measurement of sodium ion concentration in undiluted urine with cation-selective polymeric membrane electrodes after the removal of interfering compounds.” Talanta 74 (2007) 255–264

Jianfeng Ping, Yixian Wang, Jian Wu and Yibin Ying. “Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer” Electrochemistry Communications 13, (2011) 1529–1532

Mohamed K. Abd El-Rahman, Mamdouh R. Rezk, Amr M. Mahmoud and Mohamed R. Elghobashy. ”Design of a stable solid-contact ion-selective electrode based on polyaniline nanoparticles as ion-to-electron transducer for application in process analytical technology as a real-time analyzer.” Sensors and Actuators B 208 (2015) 14–21

Lindner, E. and R. E. Gyurcsányi. "Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes." Journal of Solid State Electrochemistry (1) (2008), 51-68

Liang Wang, Ying Cheng, Dane L., Zuliang Chen, Peter J., Mallavarapu M. and Ravendra Naidu. “Simultaneously determining multi-metal ions using an ion selective electrode array system.” Environmental Technology & Innovation 6 (2016) 165–176

Y. Yang, M. Kang, S. Fang, M. Wang, L. He, J. Zhao, H. Zhang and Z. Zhang. ”Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions.” Sensors and Actuators B 214 (2015) 63–69

Tom L., Harri A. and Ari I. “Potassium-Selective Electrodes with Stable and Geometrically Well-Defined Internal Solid Contact Based on Nanoparticles of Polyaniline and Plasticized Poly(vinyl chloride).” Anal. Chem. (2007) 79, 8571-8577

A. Bratov, N. Abramova, J. M.-Vico, J. Soley and C. Ocana. “Solid contact ion sensor with conducting polymer layer copolymerized with the ion-selective membrane for determination of calcium in blood serum.” Analytica Chimica Acta 943 (2016) 50-57

L. Niu, L. Jiao, F. Jia, J. Ye, F. Li, S. Gan, Q. Zhang and Ari I. “Robust single-piece all-solid-state potassium-selective electrode with monolayer-protected Au clusters.” Journal of Electroanalytical Chemistry 781 (2016) 272–277

T. Lindfors, N. He, L. Höfler and R.-M. Latonena.” Influence of hydrophobization of the polyazulene ion-to-electron transducer on the potential stability of calcium-selective solid-contact electrodes.” Sensors and Actuators B 207 (2015) 918–925

Nicole J.-R., M. Braieka, M. A. Djebbi, J.-Franc and o. Chateaux.” A conductometric sensor for potassium detection in whole blood.” Sensors and Actuators B 235 (2016) 27–32

J. Bobacka, J. Ding, N. He, G. Lisa and W. Qin.” Paper-based microfluidic sampling and separation of analytes for potentiometric ion sensing.” Sensors and Actuators B 243 (2017) 346–352

Andrea Bratova, N. Abramova, A. Ipatova and S. Levichev. “Integrated multi-sensor chip with hotocured polymer membranes containing copolymerised plasticizer for direct pH, potassium, sodium and chloride ions determination in blood serum.” Talanta 79 (2009) 984–989

J. Gismera, B. G.-Nieto, T. Sevilla, J. Satrústegui and Jesús R. Procopio.” Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.” Talanta 170 (2017) 15–21

H. Huang, L. Zhang, S. Chen and Q. Zhao. “Carbon dots as a fluorescent probe for label-free detection of physiological potassium level in human serum and red blood cells.” Analytica Chimica Acta 880 (2015) 130–135

Francisco J. Andrade, M. Novell, T. Guinovart, P. Blondeau and F. Xavier Rius. “A paper-based potentiometric cell for decentralized monitoring of Li levels in whole blood.” Royal society of chemistry 14 (2014) 1308–1314

F. Xavier Rius-Ruiz, Diego Bejarano-Nosas, Pascal Blondeau, Jordi Riu, and F. Xavier Rius.” Disposable Planar Reference Electrode Based on Carbon Nanotubes and Polyacrylate Membrane.” American Chemical Society 14 (2011) 5783–5788

M. Odijk, E.J. van der Wouden, W. Olthuis, M.D. Ferrari, E.A. Tolner, A.M.J.M. van den Maagdenberg and A. van den Berg. “Microfabricated solid-state ion-selective electrode probe for measuring potassium in the living rodent brain: Compatibility with DC-EEG recordings to study spreading depression.” Sensors and Actuators B 207 (2015) 945–953

M.E. Paez-Hernandez, J. Juarez-Gomez, F. Perez-Garcia, M.T. Ramirez-Silva, A. Rojas-Hernandez and C.A. Galan-Vidal. “Solid-contact Hg(II)-selective electrode based on a carbon-epoxy composite containing a new dithiophosphate-based ionophore.” Talanta 114 (2013) 235–242

Naader Alizadeh and Samaneh Nabavi.” Synthesis and characterization of novel tetra cyclo pyrrole ether as an anion recognition element for nanocomposite nitrate ion selective carbon paste electrode.” Sensors and Actuators B 205 (2014) 127–135

P. Temple-Boyer, A. Cazalé, W. Sant, F. Ginot, J.-C. Launay, G. Savourey, F. Revol-Cavalier, J.M. Lagardef, D. Heinryg and J. Launay. “Physiological stress monitoring using sodium ion potentiometric microsensors for sweat analysis.” Sensors and Actuators B 225 (2016) 1–9
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top