跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐培修
研究生(外文):Pei-Hsiu Hsu
論文名稱:利用事前磁振衰減資訊同步改善飛行時間正子斷層掃描系統之放射活性和衰減估算
論文名稱(外文):Improvement of Simultaneous Radioactivity and Attenuation Estimation in TOF-PET Using MR-Based Attenuation Prior
指導教授:周呈霙周呈霙引用關係
指導教授(外文):Cheng-Ying Chou
口試日期:2017-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:47
中文關鍵詞:飛行時間正子斷層掃描衰減校正全變異磁振事前資訊
外文關鍵詞:Time-of-flightPositron emitron tomographyAttenuation correctionTotal variationMR prior
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在同步改善飛行時間正子掃描系統(Time-of-Flight PET)之放射活性及衰減估算。近年來PET硬體時間解析度的提高,使PET系統得以解決飛行時間的資訊,能夠減少雜訊和假影,從而提高影像的質量。而透過疊代式的演算法,TOF-PET已經可以進一步延伸到同步估算光子活動以及衰減的分佈圖;在混合的正子掃描/磁振系統中,磁振影像(MRI)可以提供良好的軟組織對比度和解析度,並且也可以用於衰減校正。
在這項研究中,我們將數據保真項、總變異和磁振影像衍生之衰減事前資訊表達成一個複合的凸優化問題。根據我們透過電腦程式設計演算法及模擬的結果,與使用最大似然放射活性與衰減估算演算法(MLAA)獲得的放射活性和衰減估計進行比較,加入磁振事前資訊與總變異約束項的MR-MLAA-TV演算法的應用可以有效提高影像邊緣特徵,並降低雜訊的出現。
The aim of this study was to improve the radio-activity and attenuation estimates of time-of-flight PET. In recent years, as the time resolution of PET hardware improved, the time-of flight (TOF) information can be fully utilized, which can reduce noise and artifacts of the PET reconstruction image, thereby improving the quality of the image. TOF-PET can be further extended to simultaneously estimate the photon activity and the attenuation distribution. In hybrid PET/MR systems, the magnetic resonance image (MRI) can offer excellent soft tissue contrast and resolution and also be used for attenuation correction.
In this study, we express the data fidelity term, the total variation term and the MR attenuation prior information into a composite convex optimization problem. According to the results of the computer program design algorithm and simulation, we compare the activity and attenuation estimation results of obtained by MLAA algorithm with MR-MLAA-TV algorithm. The application of the MR-MLAA-TV algorithm with the MR prior information and the total variation constraint can effectively improve the edge feature of the image and reduce the occurrence of noise.
目錄
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻探討 4
2.1 正子斷層掃描 4
2.1.1 原理 4
2.1.2 光子偵收的物理特性 5
2.1.3 飛行時間正子斷層掃描系統 7
2.2 機率矩陣計算 10
2.2.1 機率矩陣 10
2.2.2 射束追蹤法(ray tracing) 12
2.2.3 飛行時間機率矩陣(TOF probability matrix) 13
2.3 PET影像重建演算法 13
2.3.1 MLEM 13
2.3.2 總變異(total variation) 15
2.3.3 最大似然放射活性和衰減估計(MLAA) 16
2.3.4 磁振事前資訊(MR prior information) 18
第三章 研究方法 20
3.1 實驗模擬 20
3.1.1 系統設置 20
3.1.2 模擬設備 21
3.2 系統反應矩陣建立 21
3.2.1 系統對稱性 21
3.2.2 應用射束追蹤法模擬飛行時間系統反應矩陣 22
3.3.2 MR-MLAA-TV 27
第四章 結果與討論 30
4.1 模擬假體 30
4.2 演算法效能評估 32
4.2.1 相似度函數 32
4.2.2 總變異約束項對影像之影響 32
4.2.3 飛行時間資訊對影像之影響 34
4.2.3 磁振事前資訊對影像之影響 37
4.2.5 剖面圖比較 40
4.2.6 均方誤差比較 41
第五章 結論與未來方向 42
第六章 參考文獻 43
Aklan, B., Jakoby, B., Watson, C., Braun, H., Ritt, P., & Quick, H. H. (2015). GATE Monte Carlo simulations for variations of an integrated PET/MR hybrid imaging system based on the Biograph mMR model. Physics in medicine and biology, 60(12), 4731.
Bataille, F., Comtat, C., Jan, S., & Trebossen, R. (2004). Monte Carlo simulation for the ECAT HRRT using GATE. Paper presented at the Nuclear Science Symposium Conference Record, 2004 IEEE.
Beck, A., & Teboulle, M. (2009). Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11), 2419-2434.
Berker, Y., & Li, Y. (2016). Attenuation correction in emission tomography using the emission data—a review. Medical physics, 43(2), 807-832.
Chen, C., Ng, M. K., & Zhao, X.-L. (2015). Alternating direction method of multipliers for nonlinear image restoration problems. IEEE Transactions on Image Processing, 24(1), 33-43.
Combettes, P. L., & Pesquet, J.-C. (2011). Proximal splitting methods in signal processing Fixed-point algorithms for inverse problems in science and engineering (pp. 185-212): Springer.
Cremers, D. Newton Methods for Total Variation Minimization.
Defrise, M., Rezaei, A., & Nuyts, J. (2012). Time-of-flight PET data determine the attenuation sinogram up to a constant. Physics in medicine and biology, 57(4), 885.
Defrise, M., Salvo, K., Rezaei, A., Nuyts, J., Panin, V., & Casey, M. (2014). ML estimation of the scatter scaling in TOF PET. Paper presented at the Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014 IEEE.
Ehrhardt, M. J., Markiewicz, P., Liljeroth, M., Barnes, A., Kolehmainen, V., Duncan, J. S., . . . Ourselin, S. (2016). PET Reconstruction with an Anatomical MRI Prior using Parallel Level Sets.
Gabay, D., & Mercier, B. (1976). A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers & Mathematics with Applications, 2(1), 17-40.
Geman, S., McClure, D. E., & Geman, D. (1992). A nonlinear filter for film restoration and other problems in image processing. CVGIP: Graphical models and image processing, 54(4), 281-289.
Gundacker, S., Auffray, E., Frisch, B., Jarron, P., Knapitsch, A., Meyer, T., . . . Lecoq, P. (2013). Time of flight positron emission tomography towards 100ps resolution with L (Y) SO: an experimental and theoretical analysis. Journal of Instrumentation, 8(07), P07014.
Heußer, T., Rank, C. M., Freitag, M. T., Dimitrakopoulou-Strauss, A., Schlemmer, H.-P., Beyer, T., & Kachelrieß, M. (2016). MR–consistent simultaneous reconstruction of attenuation and activity for non–TOF PET/MR. IEEE Transactions on Nuclear Science, 63(5), 2443-2451.
Hoffman, E., & Mullani, N. (1975). Application of annihilation coincidence detection to transaxial reconstruction tomography J. Nucl Med, 16, 210-224.
Hsieh, H., & Hsiao, I. (2010). Image reconstructions from limit views and angle coverage data for a stationary multi-pinhole SPECT system. Tsinghua Science & Technology, 15(1), 44-49.
Jan, S., Santin, G., Strul, D., Staelens, S., Assie, K., Autret, D., . . . Bloomfield, P. (2004). GATE: a simulation toolkit for PET and SPECT. Physics in medicine and biology, 49(19), 4543.
Karp, J. S., & Fletcher, J. W. (2006). Time-of-flight PET. PET Center of Excellence Newsletter.
Karp, J. S., Surti, S., Daube-Witherspoon, M. E., & Muehllehner, G. (2008). Benefit of time-of-flight in PET: experimental and clinical results. Journal of Nuclear Medicine, 49(3), 462-470.
Keereman, V., Mollet, P., Berker, Y., Schulz, V., & Vandenberghe, S. (2013). Challenges and current methods for attenuation correction in PET/MR. Magnetic Resonance Materials in Physics, Biology and Medicine, 26(1), 81-98.
Khan, S. (2014). Creating positron emission tomography facility in remote areas. Indian Journal of Nuclear Medicine: IJNM, 29(4), 208.
Kinahan, P., Townsend, D., Beyer, T., & Sashin, D. (1998). Attenuation correction for a combined 3D PET/CT scanner. Medical physics, 25(10), 2046-2053.
Lewellen, T. K. (2008). Recent developments in PET detector technology. Physics in medicine and biology, 53(17), R287.
Mazoyer, B., Trebossen, R., Schoukroun, C., Verrey, B., Syrota, A., Vacher, J., . . . Lecomte, J. (1990). Physical characteristics of TTV03, a new high spatial resolution time-of-flight positron tomograph. IEEE Transactions on Nuclear Science, 37(2), 778-782.
Mehranian, A., & Zaidi, H. (2014). Joint estimation of activity and attenuation in PET/MR using MR-constrained Gaussian priors. Paper presented at the Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014 IEEE.
Miller, P. W., Long, N. J., Vilar, R., & Gee, A. D. (2008). Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angewandte Chemie International Edition, 47(47), 8998-9033.
Nuyts, J., Bal, G., Kehren, F., Fenchel, M., Michel, C., & Watson, C. (2013). Completion of a truncated attenuation image from the attenuated PET emission data. IEEE transactions on medical imaging, 32(2), 237-246.
Nuyts, J., Dupont, P., Stroobants, S., Benninck, R., Mortelmans, L., & Suetens, P. (1999). Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE transactions on medical imaging, 18(5), 393-403.
Panin, V., Zeng, G., & Gullberg, G. (1999). Total variation regulated EM algorithm [SPECT reconstruction]. IEEE Transactions on Nuclear Science, 46(6), 2202-2210.
Rezaei, A., Defrise, M., Bal, G., Michel, C., Conti, M., Watson, C., & Nuyts, J. (2012). Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE transactions on medical imaging, 31(12), 2224-2233.
Rezaei, A., Defrise, M., & Nuyts, J. (2014). ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. IEEE transactions on medical imaging, 33(7), 1563-1572.
Robertson, J. S. (1961). SECTION OF PHYSICAL SCIENCES: THE USE OF ANALOG COMPUTERS IN THE KINETIC ANALYSIS OF COMPARTMENTED SYSTEMS. Transactions of the New York Academy of Sciences, 23(6 Series II), 506-512.
Salomon, A., Goedicke, A., Schweizer, B., Aach, T., & Schulz, V. (2011). Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE transactions on medical imaging, 30(3), 804-813.
Siddon, R. L. (1985). Fast calculation of the exact radiological path for a three‐dimensional CT array. Medical physics, 12(2), 252-255.
Ter-Pogossian, M. M., Phelps, M. E., Hoffman, E. J., & Mullani, N. A. (1975). A Positron-Emission Transaxial Tomograph for Nuclear Imaging (PETT) 1. Radiology, 114(1), 89-98.
Xu, J. (2014). Modeling and development of iterative reconstruction algorithms in emerging x-ray imaging technologies.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top