跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 02:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘芃諭
研究生(外文):Peng-Yu Pan
論文名稱:模擬探討基因體選種在水稻育種計畫中之運用
論文名稱(外文):Genomic selection in rice breeding programs — a simulation study
指導教授:黃永芬
指導教授(外文):Yung-Fen Huang
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:71
中文關鍵詞:基因體選種十折交叉驗證雙親本雜交輪迴選種水稻 (Oryza sativa)
外文關鍵詞:genomic selection10-fold cross-validationbi-parental crossrecurrent selectionrice (Oryza sativa)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:649
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基因體選種 (genomic selection, GS) 是一種新興的分子標誌輔助選種方法 (marker-assisted selection, MAS),利用覆蓋整個基因體的大量分子標誌計算個體育種價估計值 (genomic estimated breeding value, GEBV),並依此選拔出優良個體。由於高通量基因型鑑定技術的演進及成本下滑,研究者期盼藉由高通量基因型資料取代部份的外表型調查工作,使得單位時間能產生更佳的選拔效率。本研究欲藉由模擬探討GS在水稻育種計畫中之遺傳增進效果,分別探討雙親本雜交 (bi-parental cross) 及輪迴選種 (recurrent selection) 兩種育種流程。在此利用327個秈稻 (Oryza sativa L. ssp. indica) 優良品系的產量、抽穗期及株高之性狀資料,及5,264個單核苷酸多型性分子標誌 (single nucleotide polymorphism, SNP) 的基因型資料,以十折交叉驗證 (10-fold cross-validation) 比較8個統計方法的預測準確度,選出各性狀最適合之統計方法。比較結果顯示產量和株高最適用之GS模型為RR-BLUP,抽穗期則以BayesB最佳,後續以這兩種方法預測個體之GEBV。從327品系中選出5個產量表現優異之品系作為雙親本雜交親本,在傳統外表型選種 (phenotypic selection, PS) 架構下,於F2及F6世代另外以GS選拔產量性狀,比較10個雜交組合之GS與PS結果。結果顯示九個雜交組合之GS平均產量優於PS,六個雜交組合中GS選拔之品系較PS早抽穗,八個雜交組合顯示GS選拔之品系株高較PS矮。輪迴選種以327品系中產量與抽穗期各前四名共八個品系作為親本,結果顯示,隨著循環數 (cycle) 增加,族群的產量與抽穗期皆有顯著改進,且對偶基因頻度於Cycle 2即大量固定,GS能有效改良族群並快速累積有利對偶基因頻度。本研究以模擬方式探討GS在水稻育種計畫中之應用,未來或可先以輪迴選種改良族群,再從中選出優良親本雜交,於F2早世代及F6以GS方式節省大量人力且較精確選拔出優良品系。
Genomic selection (GS) is a new marker-assisted selection (MAS) method. GS uses a large number of molecular markers covering the entire genome to estimate the genomic estimated breeding value (GEBV) based on which the selection is made. Thanks to the evolution of high-throughput genotyping techniques and the consequent decline in costs, researchers expect to replace part of the phenotype survey by high-throughput genotypic data, resulting in a better selection efficiency per unit time. In this study, we wanted to explore the genetic improvement of GS in rice breeding program, and to explore the breeding methods of bi-parental cross and recurrent selection. The data set comprised of yield, flowering time (FL) and plant height (PH) from 327 indica rice (Oryza sativa L. ssp. indica) and 5,264 single nucleotide polymorphisms (SNP). Ten-fold cross-validation was used to assay the prediction accuracy of eight statistical models. The results showed that RR-BLUP was the most suitable model for yield and PH while BayesB for FL. In the traditional phenotypic selection (PS) framework, five lines with excellent yield were selected as parents from the initial 327 varieties. GS was applied in F2 and F6 in order to compare GS and PS in 10 bi-parental crosses. In recurrent selection scheme, the top four lines in yield and the earliest four liens in FL from the initial 327 varieties, were used as a parent. The results showed that the yield and FL of the population were significantly improved with the increase of cycle number, and the allele frequency is almost fixed in Cycle 2. GS can effectively improve the population and quickly accumulate favorable alleles. Based on the present study, a possible breeding scheme using GBS could be population improvement by recurrent selection then purify potential lines or select parents for bi-parental cross. Using GS in F2 early generation and F6 can be a way to save much manpower and precisely select candidate lines.
口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 viii
中英對照表 ix
一、前言 1
1.1基因體選種簡介 1
1.2 統計方法 3
1.3 目前GS研究趨勢 5
1.4 研究目的 7
二、材料與方法 8
2.1 植物材料之外表型資料及基因型資料 8
2.2 變方分析與外表型資料校正 9
2.3 族群結構分析與全基因體關聯分析 10
2.4 GS模型之分子標誌 10
2.5 建立預測模型 11
2.5.1 RR-BLUP 11
2.5.2 BRR 12
2.5.3 Bayesian LASSO 13
2.5.4 BayesA、BayesB與BayesC 13
2.5.5 RKHS 14
2.5.6 Random Forests 15
2.6 十折交叉驗證 15
2.7 雙親本雜交 16
2.8 輪迴選種 17
三、結果 18
3.1 外表型資料 18
3.2 族群結構分析與全基因體關聯分析 18
3.3 統計模型比較 19
3.4 雙親本雜交之GS與PS比較 19
3.5 輪迴選種 20
四、討論 21
4.1 統計模型預測準確度 21
4.1.1 影響預測準確度因子 21
4.1.2 性狀遺傳結構與統計模型關係 22
4.1.3 利用歷史資料建立預測模型 24
4.2 雙親本雜交 24
4.2.1 探討雙親本雜交產量性狀GS效率較PS高之原因 24
4.2.2 實際育種計畫之應用 25
4.3 輪迴選種 27
4.3.1 族群多樣性下降 27
4.3.2 初始親本選拔方式 28
4.4 雙親本雜交與輪迴選種 29
五、結論 30
參考文獻 62
附錄 69
Ashraf B, Edriss V, Akdemir D, Autrique E, Bonnett D, Crossa J, Janss L, Singh R, Jannink J-L (2016) Genomic prediction using phenotypes from pedigreed lines with no marker data. Crop Sci 56:957-964
Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink J-L (2011) Accuracy and training population design for genomic selection on quantitative traits in elite north american oats. Plant Genome 4:132-144
Auinger HJ, Schonleben M, Lehermeier C, Schmidt M, Korzun V, Geiger HH, Piepho HP, Gordillo A, Wilde P, Bauer E, Schon CC (2016) Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.). Theor Appl Genet 129:2043-2053
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1-48
Begum H, Spindel JE, Lalusin A, Borromeo T, Gregorio G, Hernandez J, Virk P, Collard B, McCouch SR (2015) Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS One 10:e0119873
Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649-1664
Bernardo R (2010) Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624-627
Bernardo R, Moreau L, Charcosset A (2006) Number and fitness of selected individuals in marker-assisted and phenotypic recurrent selection. Crop Sci 46:1972-1980
Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082-1090
Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154-163
Breiman L (2001) Random forests. Machine Learning 45:5-32
Combs E, Bernardo R (2013) Genomewide selection to introgress semidwarf maize germplasm into U.S. corn belt inbreds. Crop Sci 53:1427-1436
Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Ceron-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D, Mathews K (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48-60
David Desrousseaux, Florian Sandron, Aurelie Siberchicot, Christine Cierco-Ayrolles, Mangin B (2013) LDcorSV: linkage disequilibrium corrected by the structure and the relatedness
Dekkers JC (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breed Genet 124:331-341
Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592-601
Duangjit J, Causse M, Sauvage C (2016) Efficiency of genomic selection for tomato fruit quality. Mol Breed 36:29
Dunckel S, Crossa J, Wu SY, Bonnett D, Poland J (2017) Genomic selection for increased yield in synthetic-derived wheat. Crop Sci 57:713-725
Fox J, Weisberg S (2011) An R Companion to Applied Regression, 2nd edn. Thousand Oaks CA: Sage
Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245-257
Gorjanc G, Battagin M, Dumasy J-F, Antolin R, Gaynor RC, Hickey JM (2017) Prospects for cost-effective genomic selection via accurate within-family imputation. Crop Sci 57:216-228
Gowda M, Zhao Y, Wurschum T, Longin CF, Miedaner T, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Martinant JP, Mette MF, Reif JC (2014) Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity 112:552-561
Grenier C, Cao TV, Ospina Y, Quintero C, Chatel MH, Tohme J, Courtois B, Ahmadi N (2015) Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS One 10:e0136594
Habyarimana E, Parisi B, Mandolino G, Wehling P (2017) Genomic prediction for yields, processing and nutritional quality traits in cultivated potato (Solanum tuberosum L.). Plant Breeding 136:245-252
He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129:641-651
Heffner EL, Jannink J-L, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65-75
Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681-1690
Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1-12
Jacobson A, Lian L, Zhong S, Bernardo R (2015) Minimal loss of genetic diversity after genomewide selection within biparental maize populations. Crop Sci 55:783-789
Lado B, Barrios PG, Quincke M, Silva P, Gutiérrez L (2016) Modeling genotype × environment interaction for genomic selection with unbalanced data from a wheat breeding Program. Crop Sci 56:2165-2179
Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18-22
Lin Z, Cogan NO, Pembleton LW, Spangenberg GC, Forster JW, Hayes BJ, Daetwyler HD (2016) Genetic gain and inbreeding from genomic selection in a simulated commercial breeding program for perennial ryegrass. Plant Genome 9:1-12
Longin CF, Mi X, Wurschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297-1306
Lorenz AJ, Chao SM, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77-123
Lorenz AJ, Smith KP (2015) Adding genetically distant individuals to training populations reduces genomic prediction accuracy in barley. Crop Sci 55:2657-2667
Lorenz AJ, Smith KP, Jannink JL (2012) Potential and optimization of genomic selection for fusarium head blight resistance in six-row barley. Crop Sci 52:1609-1621
Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151-161
Ma Y, Reif JC, Jiang Y, Wen Z, Wang D, Liu Z, Guo Y, Wei S, Wang S, Yang C, Wang H, Yang C, Lu W, Xu R, Zhou R, Wang R, Sun Z, Chen H, Zhang W, Wu J, Hu G, Liu C, Luan X, Fu Y, Guo T, Han T, Zhang M, Sun B, Zhang L, Chen W, Wu C, Sun S, Yuan B, Zhou X, Han D, Yan H, Li W, Qiu L (2016) Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Mol Breed 36:113
Marulanda JJ, Melchinger AE, Würschum T, Pillen K (2015) Genomic selection in biparental populations: assessment of parameters for optimum estimation set design. Plant Breeding 134:623-630
Marulanda JJ, Mi X, Melchinger AE, Xu JL, Wurschum T, Longin CF (2016) Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor Appl Genet 129:1901-1913
Massman JM, Jung H-JG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53:58-66
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics Society of America 157:1819-1829
Mohammadi M, Tiede T, Smith KP (2015) PopVar: a genome-wide procedure for predicting genetic variance and correlated response in biparental breeding populations. Crop Sci 55:2068-2077
Moreau L, Charcosset A, Gallais A (2004) Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica 137:111-118
Onogi A, Ideta O, Inoshita Y, Ebana K, Yoshioka T, Yamasaki M, Iwata H (2015) Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.). Theor Appl Genet 128:41-53
Park T, Casella G (2008) The Bayesian lasso. Journal of the American Statistical Association 103:681-686
Perez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483-495
Perez P, de Los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome 3:106-116
Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103-113
R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rajsic P, Weersink A, Navabi A, Peter Pauls K (2016) Economics of genomic selection: the role of prediction accuracy and relative genotyping costs. Euphytica 210:259-276
Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink JL, Sorrells ME (2015) Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant Genome 8:1-10
Sallam AH, Smith KP (2016) Genomic selection performs similarly to phenotypic selection in barley. Crop Sci 56:2871-2881
Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218-223
Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G, Jannink JL, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982
Storlie E, Charmet G (2013) Genomic selection accuracy using historical data generated in a wheat breeding program. Plant Genome 6
Taylor JF, Taylor KH, Decker JE (2016) Holsteins are the genomic selection poster cows. Proc Natl Acad Sci U S A 113:7690-7692
Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger AE (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343-1355
Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breeding and Biotechnology 2:195-212
Wang Y, Mette MF, Miedaner T, Gottwald M, Wilde P, Reif JC, Zhao Y (2014) The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genomics 15:556
Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815-824
Wurschum T, Maurer HP, Weissmann S, Hahn V, Leiser WL (2017) Accuracy of within- and among-family genomic prediction in triticale. Plant Breeding 136:230-236
Yamamoto E, Matsunaga H, Onogi A, Kajiya-Kanegae H, Minamikawa M, Suzuki A, Shirasawa K, Hirakawa H, Nunome T, Yamaguchi H, Miyatake K, Ohyama A, Iwata H, Fukuoka H (2016) A simulation-based breeding design that uses whole-genome prediction in tomato. Sci Rep 6:19454
Yamamoto E, Matsunaga H, Onogi A, Ohyama A, Miyatake K, Yamaguchi H, Nunome T, Iwata H, Fukuoka H (2017) Efficiency of genomic selection for breeding population design and phenotype prediction in tomato. Heredity 118:202-209
You FM, Booker HM, Duguid SD, Jia G, Cloutier S (2016) Accuracy of genomic selection in biparental populations of flax (Linum usitatissimum L.). Crop Journal 4:290-303
Zhao Y, Mette MF, Reif JC, Ordon F (2015) Genomic selection in hybrid breeding. Plant Breeding 134:1-10
Zhong S, Dekkers JC, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355-364
Ziyomo C, Bernardo R (2013) Drought tolerance in maize: indirect selection through secondary traits versus genomewide selection. Crop Sci 53:1269-1275
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top