|
Ashraf B, Edriss V, Akdemir D, Autrique E, Bonnett D, Crossa J, Janss L, Singh R, Jannink J-L (2016) Genomic prediction using phenotypes from pedigreed lines with no marker data. Crop Sci 56:957-964 Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink J-L (2011) Accuracy and training population design for genomic selection on quantitative traits in elite north american oats. Plant Genome 4:132-144 Auinger HJ, Schonleben M, Lehermeier C, Schmidt M, Korzun V, Geiger HH, Piepho HP, Gordillo A, Wilde P, Bauer E, Schon CC (2016) Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.). Theor Appl Genet 129:2043-2053 Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1-48 Begum H, Spindel JE, Lalusin A, Borromeo T, Gregorio G, Hernandez J, Virk P, Collard B, McCouch SR (2015) Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS One 10:e0119873 Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649-1664 Bernardo R (2010) Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624-627 Bernardo R, Moreau L, Charcosset A (2006) Number and fitness of selected individuals in marker-assisted and phenotypic recurrent selection. Crop Sci 46:1972-1980 Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082-1090 Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154-163 Breiman L (2001) Random forests. Machine Learning 45:5-32 Combs E, Bernardo R (2013) Genomewide selection to introgress semidwarf maize germplasm into U.S. corn belt inbreds. Crop Sci 53:1427-1436 Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Ceron-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D, Mathews K (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48-60 David Desrousseaux, Florian Sandron, Aurelie Siberchicot, Christine Cierco-Ayrolles, Mangin B (2013) LDcorSV: linkage disequilibrium corrected by the structure and the relatedness Dekkers JC (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breed Genet 124:331-341 Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592-601 Duangjit J, Causse M, Sauvage C (2016) Efficiency of genomic selection for tomato fruit quality. Mol Breed 36:29 Dunckel S, Crossa J, Wu SY, Bonnett D, Poland J (2017) Genomic selection for increased yield in synthetic-derived wheat. Crop Sci 57:713-725 Fox J, Weisberg S (2011) An R Companion to Applied Regression, 2nd edn. Thousand Oaks CA: Sage Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245-257 Gorjanc G, Battagin M, Dumasy J-F, Antolin R, Gaynor RC, Hickey JM (2017) Prospects for cost-effective genomic selection via accurate within-family imputation. Crop Sci 57:216-228 Gowda M, Zhao Y, Wurschum T, Longin CF, Miedaner T, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Martinant JP, Mette MF, Reif JC (2014) Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity 112:552-561 Grenier C, Cao TV, Ospina Y, Quintero C, Chatel MH, Tohme J, Courtois B, Ahmadi N (2015) Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS One 10:e0136594 Habyarimana E, Parisi B, Mandolino G, Wehling P (2017) Genomic prediction for yields, processing and nutritional quality traits in cultivated potato (Solanum tuberosum L.). Plant Breeding 136:245-252 He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129:641-651 Heffner EL, Jannink J-L, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65-75 Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681-1690 Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1-12 Jacobson A, Lian L, Zhong S, Bernardo R (2015) Minimal loss of genetic diversity after genomewide selection within biparental maize populations. Crop Sci 55:783-789 Lado B, Barrios PG, Quincke M, Silva P, Gutiérrez L (2016) Modeling genotype × environment interaction for genomic selection with unbalanced data from a wheat breeding Program. Crop Sci 56:2165-2179 Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18-22 Lin Z, Cogan NO, Pembleton LW, Spangenberg GC, Forster JW, Hayes BJ, Daetwyler HD (2016) Genetic gain and inbreeding from genomic selection in a simulated commercial breeding program for perennial ryegrass. Plant Genome 9:1-12 Longin CF, Mi X, Wurschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297-1306 Lorenz AJ, Chao SM, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77-123 Lorenz AJ, Smith KP (2015) Adding genetically distant individuals to training populations reduces genomic prediction accuracy in barley. Crop Sci 55:2657-2667 Lorenz AJ, Smith KP, Jannink JL (2012) Potential and optimization of genomic selection for fusarium head blight resistance in six-row barley. Crop Sci 52:1609-1621 Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151-161 Ma Y, Reif JC, Jiang Y, Wen Z, Wang D, Liu Z, Guo Y, Wei S, Wang S, Yang C, Wang H, Yang C, Lu W, Xu R, Zhou R, Wang R, Sun Z, Chen H, Zhang W, Wu J, Hu G, Liu C, Luan X, Fu Y, Guo T, Han T, Zhang M, Sun B, Zhang L, Chen W, Wu C, Sun S, Yuan B, Zhou X, Han D, Yan H, Li W, Qiu L (2016) Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Mol Breed 36:113 Marulanda JJ, Melchinger AE, Würschum T, Pillen K (2015) Genomic selection in biparental populations: assessment of parameters for optimum estimation set design. Plant Breeding 134:623-630 Marulanda JJ, Mi X, Melchinger AE, Xu JL, Wurschum T, Longin CF (2016) Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor Appl Genet 129:1901-1913 Massman JM, Jung H-JG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53:58-66 Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics Society of America 157:1819-1829 Mohammadi M, Tiede T, Smith KP (2015) PopVar: a genome-wide procedure for predicting genetic variance and correlated response in biparental breeding populations. Crop Sci 55:2068-2077 Moreau L, Charcosset A, Gallais A (2004) Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica 137:111-118 Onogi A, Ideta O, Inoshita Y, Ebana K, Yoshioka T, Yamasaki M, Iwata H (2015) Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.). Theor Appl Genet 128:41-53 Park T, Casella G (2008) The Bayesian lasso. Journal of the American Statistical Association 103:681-686 Perez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483-495 Perez P, de Los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome 3:106-116 Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103-113 R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Rajsic P, Weersink A, Navabi A, Peter Pauls K (2016) Economics of genomic selection: the role of prediction accuracy and relative genotyping costs. Euphytica 210:259-276 Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink JL, Sorrells ME (2015) Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant Genome 8:1-10 Sallam AH, Smith KP (2016) Genomic selection performs similarly to phenotypic selection in barley. Crop Sci 56:2871-2881 Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218-223 Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G, Jannink JL, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982 Storlie E, Charmet G (2013) Genomic selection accuracy using historical data generated in a wheat breeding program. Plant Genome 6 Taylor JF, Taylor KH, Decker JE (2016) Holsteins are the genomic selection poster cows. Proc Natl Acad Sci U S A 113:7690-7692 Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger AE (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343-1355 Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breeding and Biotechnology 2:195-212 Wang Y, Mette MF, Miedaner T, Gottwald M, Wilde P, Reif JC, Zhao Y (2014) The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genomics 15:556 Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815-824 Wurschum T, Maurer HP, Weissmann S, Hahn V, Leiser WL (2017) Accuracy of within- and among-family genomic prediction in triticale. Plant Breeding 136:230-236 Yamamoto E, Matsunaga H, Onogi A, Kajiya-Kanegae H, Minamikawa M, Suzuki A, Shirasawa K, Hirakawa H, Nunome T, Yamaguchi H, Miyatake K, Ohyama A, Iwata H, Fukuoka H (2016) A simulation-based breeding design that uses whole-genome prediction in tomato. Sci Rep 6:19454 Yamamoto E, Matsunaga H, Onogi A, Ohyama A, Miyatake K, Yamaguchi H, Nunome T, Iwata H, Fukuoka H (2017) Efficiency of genomic selection for breeding population design and phenotype prediction in tomato. Heredity 118:202-209 You FM, Booker HM, Duguid SD, Jia G, Cloutier S (2016) Accuracy of genomic selection in biparental populations of flax (Linum usitatissimum L.). Crop Journal 4:290-303 Zhao Y, Mette MF, Reif JC, Ordon F (2015) Genomic selection in hybrid breeding. Plant Breeding 134:1-10 Zhong S, Dekkers JC, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355-364 Ziyomo C, Bernardo R (2013) Drought tolerance in maize: indirect selection through secondary traits versus genomewide selection. Crop Sci 53:1269-1275
|