|
Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data. Apel, K., and Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 55, 373–399. Du, C., Hoffman, A., He, L., Caronna, J., and Dooner, H.K. (2011). The complete Ac/Ds transposon family of maize. BMC Genomics 12, 588. Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38, W64–W70. Feschotte, C. (2008). Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405. Hirsch, C.D., and Springer, N.M. (2017). Transposable element influences on gene expression in plants. Biochim. Biophys. Acta BBA - Gene Regul. Mech. 1860, 157–165. Huang, J., Gao, Y., Jia, H., Liu, L., Zhang, D., and Zhang, Z. (2015). Comparative transcriptomics uncovers alternative splicing changes and signatures of selection from maize improvement. BMC Genomics 16, 363. Keren, H., Lev-Maor, G., and Ast, G. (2010). Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 11, 345–355. Kodama, Y., Shumway, M., and Leinonen, R. (2012). The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res. 40, D54–D56. Kunze, R., Stochaj, U., Laufs, J., and Starlinger, P. (1987). Transcription of transposable element Activator (Ac) of Zea mays L. EMBO J. 6, 1555–1563. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. Law, M., Childs, K.L., Campbell, M.S., Stein, J.C., Olson, A.J., Holt, C., Panchy, N., Lei, J., Jiao, D., Andorf, C.M., et al. (2015). Automated Update, Revision, and Quality Control of the Maize Genome Annotations Using MAKER-P Improves the B73 RefGen_v3 Gene Models and Identifies New Genes. Plant Physiol. 167, 25–39. Liu, L.D., and Charng, Y.-C. (2012). Genome-Wide Survey of Ds Exonization to Enrich Transcriptomes and Proteomes in Plants. Evol. Bioinforma. Online 8, 575–587. Lorković, Z.J., Wieczorek Kirk, D.A., Lambermon, M.H.L., and Filipowicz, W. (2000). Pre-mRNA splicing in higher plants. Trends Plant Sci. 5, 160–167. Makarevitch, I., Waters, A.J., West, P.T., Stitzer, M., Hirsch, C.N., Ross-Ibarra, J., and Springer, N.M. (2015). Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress. PLOS Genet. 11, e1004915. Mastrangelo, A.M., Marone, D., Laidò, G., De Leonardis, A.M., and De Vita, P. (2012). Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity. Plant Sci. 185–186, 40–49. Matlin, A.J., Clark, F., and Smith, C.W.J. (2005). Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398. McClintock, B. (1956). Controlling Elements and the Gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197–216. McGinnis, S., and Madden, T.L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, W20–W25. Regulski, M., Lu, Z., Kendall, J., Donoghue, M.T.A., Reinders, J., Llaca, V., Deschamps, S., Smith, A., Levy, D., McCombie, W.R., et al. (2013). The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res. 23, 1651–1662. Schurch, N.J., Schofield, P., Gierliński, M., Cole, C., Sherstnev, A., Singh, V., Wrobel, N., Gharbi, K., Simpson, G.G., Owen-Hughes, T., et al. (2016). How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22, 839–851. Severing, E.I., van Dijk, A.D., Stiekema, W.J., and van Ham, R.C. (2009). Comparative analysis indicates that alternative splicing in plants has a limited role in functional expansion of the proteome. BMC Genomics 10, 154. Seyednasrollah, F., Laiho, A., and Elo, L.L. (2013). Comparison of software packages for detecting differential expression in RNA-seq studies. Brief. Bioinform. bbt086. Sigrist, C.J.A., de Castro, E., Cerutti, L., Cuche, B.A., Hulo, N., Bridge, A., Bougueleret, L., and Xenarios, I. (2013). New and continuing developments at PROSITE. Nucleic Acids Res. 41, D344–D347. Simon, R., and Starlinger, P. (1987). Transposable element Ds2 of Zea mays influences polyadenylation and splice site selection. Mol. Gen. Genet. MGG 209, 198–199. Staiger, D., and Brown, J.W.S. (2013). Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25, 3640–3656. Thatcher, S.R., Zhou, W., Leonard, A., Wang, B.-B., Beatty, M., Zastrow-Hayes, G., Zhao, X., Baumgarten, A., and Li, B. (2014). Genome-Wide Analysis of Alternative Splicing in Zea mays: Landscape and Genetic Regulation[C][W]. Plant Cell 26, 3472–3487. Thatcher, S.R., Danilevskaya, O.N., Meng, X., Beatty, M., Zastrow-Hayes, G., Harris, C., Allen, B.V., Habben, J., and Li, B. (2016). Genome-Wide Analysis of Alternative Splicing during Development and Drought Stress in Maize. Plant Physiol. 170, 586–599. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578. Wei, B., Liu, H., Liu, X., Xiao, Q., Wang, Y., Zhang, J., Hu, Y., Liu, Y., Yu, G., and Huang, Y. (2016). Genome-wide characterization of non-reference transposons in crops suggests non-random insertion. BMC Genomics 17, 536. Wessler, S.R. (1991). The maize transposable Ds1 element is alternatively spliced from exon sequences. Mol. Cell. Biol. 11, 6192–6196. Witten, J.T., and Ule, J. (2011). Understanding splicing regulation through RNA splicing maps. Trends Genet. TIG 27, 89–97. Xiong, L., and Zhu, J.-K. (2001). Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiol. Plant. 112, 152–166.
|