跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/14 21:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊依臻
研究生(外文):Yi-Zhen Yang
論文名稱:利用分子標誌建立玉米單倍體鑑定技術
論文名稱(外文):Method Development for Haploid Maize Identification Using Molecular Markers
指導教授:陳凱儀
指導教授(外文):Kai-Yi Chen
口試委員:謝光照董致韡黃永芬
口試委員(外文):Guang-Jauh ShiehChih-Wei TungYung-Fen Huang
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:玉米雙單倍體單倍體誘導系染色體倍加單一核苷酸多型性
外文關鍵詞:Maizedoubled haploidhaploid inducerchromosome doublingsingle nucleotide polymorphism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雙單倍體 (doubled haploid) 技術為玉米育種得以快速育成自交系的方法。由於單倍體誘導成功率僅約10%,能正確分辨單倍體的標誌為此技術的必要工具。本研究針對使用RWS衍生之單倍體誘導系與甜質玉米「好6」和「彩白18」雜交的組合,開發DNA分子標誌。這些DNA分子標誌也同時用來評估形態標誌R1 nj與 Purple1的單倍體鑑別正確率。ID1與ID4兩個InDel分子標誌用來篩檢2849株玉米幼苗。另外三個KASP分子標誌ZMKASP_002、ZMKASP_008及ZMKASP_009亦能分辨單倍體植株與單倍體誘導系正常授粉的雜交個體。基於2849株玉米幼苗的DNA分子標誌的基因型,R1 nj標誌鑑別單倍體植株的偽發現率 (false discovery rate) 為48%、偽陰性率 (false negative rate) 為25.7%。相較之下,雖然Purple1標誌的表現程度有時十分低,但Purple1標誌的基因型鑑別結果與DNA分子標誌的基因型100%吻合。
  The doubled haploid technique is a method to develop inbred lines quickly in maize breeding programs. Because the haploid induction rate is only around 10%, efficient markers to identify haploid plant precisely are required. In the current study, DNA markers were developed for the combination of the RWS derived haploid inducer and the cross of G6 and C18 both of which are sweet corns. These DNA markers were also used to evaluate accuracy of two morphological markers R1-nj and Purple1. Two InDel markers ID1 and ID4 were used to screen a total of 2849 seedlings. Additional three KASP markers ZMKASP_002, ZMKASP_008, and ZMKASP_009 were also able to distinguish haploid individuals from hybrids of inducer lines. Based on the genotypes of 2849 seedlings, the R1-nj marker had 48% FDR(false discovery rate) and 25.7 % FNR(false negative rate). In contract, the genotypes of the Purple1 marker showed 100% matches to the genotypes of DNA markers while expressivity of the Purple1 marker were sometimes very low.
致謝......................................................i
中文摘要.................................................ii
Abstract................................................iii
目錄.....................................................iv
圖目錄....................................................v
表目錄..................................................vii
第一章 前言..............................................1
第一節 雙單倍體技術簡介...................................1
第二節 單倍體誘導系.......................................4
第三節 單倍體鑑定.........................................5
第二章 研究目的...........................................7
第三章 材料及方法.........................................8
第一節 試驗材料..........................................8
第二節 DNA萃取..........................................12
第三節 分子標誌設計......................................14
第四節 種子發芽與染色體倍加...............................21
第五節 流式細胞儀........................................23
第六節 雙單倍體植株之田間照護.............................23
第四章 結果.............................................24
第一節 分子標誌測試......................................24
第二節 植株倍體數鑑定....................................39
第三節 單倍體基因型鑑定..................................43
第五章 討論.............................................54
第一節 單倍體鑑定........................................54
第二節 雙單倍體植株生殖能力...............................58
第六章 結論.............................................63
引用文獻.................................................64
附錄.....................................................67
Ashman, R. B. (1991) Registration of three popcorn (maize) parental lines HP62-02, HP72-11, and HP68-07. Crop science, 31(5), 1402-1403.
Barret, P., Brinkmann, M., & Beckert, M. (2008) A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theoretical and Applied Genetics, 117(4), 581-594.
Chaikam, V., Martinez, L., Melchinger, A. E., Schipprack, W., & Boddupalli, P. M. (2016) Development and validation of red root marker-based haploid inducers in maize. Crop Science, 56(4), 1678-1688.
Chaikam, V., Nair, S. K., Babu, R., Martinez, L., Tejomurtula, J., & Boddupalli, P. M. (2015) Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1 nj expression. Theoretical and applied genetics, 128(1), 159-171.
Chalyk, S. T. (1994) Properties of maternal haploid maize plants and potential application to maize breeding. Euphytica, 79(1), 13-18.
Chalyk, S., Baumann, A., Daniel, G., & Eder, J. (2003) Aneuploidy as a possible cause of haploid-induction in maize. Maize Genetics Cooperation Newsletter, 77, 29-29.
Coe Jr, E. H. (1959) A line of maize with high haploid frequency. The American Naturalist, 93(873), 381-382.
Dolez, J., Johann G. & Jan S. (2007) Estimation of nuclear DNA content in plants using flow cytometry.
Dong, X., Xu, X., Miao, J., Li, L., Zhang, D., Mi, X., ... & Chen, S. (2013) Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theoretical and applied genetics, 126(7), 1713-1720.
Eder, J., & Chalyk, S. (2002) In vivo haploid induction in maize. Theoretical and Applied Genetics, 104(4), 703-708.
Häntzschel, K. R., & Weber, G. (2010) Blockage of mitosis in maize root tips using colchicine-alternatives. Protoplasma, 241(1-4), 99-104.
Hu, H., Schrag, T. A., Peis, R., Unterseer, S., Schipprack, W., Chen, S., ... & Chaikam, V. (2016) The genetic basis of haploid induction in maize identified with a novel genome-wide association method. Genetics, 202(4), 1267-1276.
Lashermes, P., & Beckert, M. (1988) Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theoretical and Applied Genetics, 76(3), 405-410.
Liu, C., Li, W., Zhong, Y., Dong, X., Hu, H., et al. (2015) Fine mapping of qhir8 affecting in vivo haploid induction in maize. Theoretical and Applied Genetics, 128(12), 2507-2515.
Liu, X., Sun, H., Wu, P., Tian, Y., Cui, D., et al. (2014) Fine mapping of the maize cross-incompatibility locus gametophytic factor 1 (ga1) using a homogeneous population. Crop Science, 54(3), 873-881.
Melchinger, A. E., Brauner, P. C., Böhm, J., & Schipprack, W. (2016a) In vivo haploid induction in maize: comparison of different testing regimes for measuring haploid induction rates. Crop Science, 56(3), 1127-1135.
Melchinger, A. E., Molenaar, W. S., Mirdita, V., & Schipprack, W. (2016b) Colchicine alternatives for chromosome doubling in maize haploids for doubled-haploid production. Crop Science, 56(2), 559-569.
Melchinger, A. E., Schipprack, W., Friedrich Utz, H., & Mirdita, V. (2014) In vivo haploid induction in maize: identification of haploid seeds by their oil content. Crop Science, 54(4), 1497-1504.
Melchinger, A. E., Schipprack, W., Würschum, T., Chen, S., & Technow, F. (2013) Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize. Scientific reports, 3, 2129.
Pilu, R., Piazza, P., Petroni, K., Ronchi, A., Martin, C., & Tonelli, C. (2003) pl‐bol3, a complex allele of the anthocyanin regulatory pl1 locus that arose in a naturally occurring maize population. The Plant Journal, 36(4), 510-521.
Pollacsek, M. (1992) Management of the ig gene for haploid induction in maize. Agronomie, 12(3), 247-251.
Prasanna, B. M., Chaikam, V., & Mahuku, G. (2012) Doubled haploid technology in maize breeding: theory and practice. CIMMYT.
Prigge, V., & Melchinger, A. E. (2012) Production of haploids and doubled haploids in maize. Plant cell culture protocols,877, 161-172.
Prigge, V., Xu, X., Li, L., Babu, R., Chen, S., Atlin, G. N., & Melchinger, A. E. (2012) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics, 190(2), 781-793.
Röber, F. K., Gordillo, G. A., & Geiger, H. H. (2005) In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica, 50(3/4), 275.
Rotarenco, V., Dicu, G., & Fuia, S. (2010) New inducers of maternal haploids in maize. Maize Genetics Cooperation Newsletter, (84), 21-22.
Wan, Y., Duncan, D. R., Rayburn, A. L., Petolino, J. F., & Widholm, J. M. (1991) The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theoretical and Applied Genetics, 81(2), 205-211.
Weed Science Society of America. (2011) Summary of herbicide mechanism of action according to the Weed Science Society of America (WSSA).
Xu, X., Li, L., Dong, X., Jin, W., Melchinger, A. E., & Chen, S. (2013) Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. Journal of experimental botany, 64(4), 1083-1096.
Zhang, Z., Qiu, F., Liu, Y., Ma, K., Li, Z., & Xu, S. (2008) Chromosome elimination and in vivo haploid production induced by stock 6-derived inducer line in maize (Zea mays L.). Plant cell reports, 27(12), 1851-1860.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top