跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 19:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何恭竹
研究生(外文):Kung-Chu Ho
論文名稱:以一種精確電阻抗法研究電解質溶液低頻的行為
論文名稱(外文):Investigation of Low Frequency Electrolytic Solution Behavior with an Accurate Electrical Impedance Method
指導教授:管傑雄管傑雄引用關係
指導教授(外文):Chieh-Hsiung Kuan
口試委員:孫允武孫建文王文竹周迺寬吳肇欣黃念祖
口試委員(外文):Yuen-Wuu SuenKien-Wen SunWen-Jwu WangNai-Kuan ChouChao-Hsin WuNien-Tsu Huang
口試日期:2017-01-20
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:78
中文關鍵詞:微流道元件電解質溶液電阻抗法質子傳輸介電損耗鬆弛頻率牛頓運動微分方程式最小平方誤差法
外文關鍵詞:microfluidic deviceelectrolytic solutionelectrical impedance methodproton transferdielectric lossrelaxation frequencyNewton differential equation of motionleast square error method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文配合特殊的微流道元件以及高解析度儀器,對單價強電解質溶液操作在低頻下,進行一種精確的電阻抗法;實驗結果顯示比以往電阻抗法較佳的重複性及精確度,尤其在低頻端的部分。此外,實驗數據顯示,電解質濃度愈高,量測準確度愈佳。經由量測實驗數據驗證,電解質行為在低頻即顯現強烈頻散特性;離子在低頻時不僅累積在電極-電解質介面、亦在微流道元件中依電場方向排列。而在較高頻時,週期電場反轉變快,使離子沿電場方向擴散程度減少,因此離子化載子遷移率改善、進而增加傳導機制。對同一電解質而言,濃電解質的較高鬆弛頻率,來自於其較強的極化現象,其起源於較高的電導、即較低的電解質塊材電阻。此外相同濃度下,酸性電解質有最大的電導率,其可歸因於水合離子與水分子間,質子傳輸之額外輔助;此結果在10-4 M以上電解質濃度尤為明顯。更重要的,所有電解質溶液都在介電損耗峰值呈現所謂的鬆弛頻率;此現象與水溶液元件內部總極化鬆弛有關。酸性電解質的鬆弛頻率亦由於質子傳輸輔助大為提升、同時亦使電解質塊材電阻值下降。我們最後以一組二階牛頓運動方程為基礎,先推導出實驗中的水溶液交流電導率,進而用最小平方誤差法求出一組離子遷移率的最佳數值解。我們發現離子遷移率的大小趨勢和傳統文獻高度相關,並在趨近於直流的低頻區、趨勢更為符合;這足以證明本套數學模型預測的準確性,以及未來發展的價值。

本研究預計應用於液體電路元件的研發。我們希望經由此實驗,對離子運動能有進一步了解,謀求研發新型態液體元件之可能,而此元件是可藉頻率調變介電常數的。我們可依此構想設計光閥門、調整出光量不同、進而改變顯示器灰階。此技術若能發展成熟,預計可取代現今液晶技術。
This dissertation reports the investigation of strong univalent electrolytic solutions with a low-frequency electrical impedance method realized through a specific microfluidic device and high resolution instruments. We have shown the better repeatability and accuracy of the proposed impedance method, especially in the lower end of the investigated frequency regime. Moreover, the experimental data shows higher accuracy in the cases of concentrated electrolytic solutions. As verified by the experimentally measured data, the electrolytic behavior reveals strong frequency dispersion relation at low frequencies because dissolved ions not only accumulate at the electrode-electrolyte interface but also align themselves in the microfluidic device along the electric field direction. At higher frequencies, the periodic reversal of the electric field represents so fast that the ions behave less diffuse in the direction of the electric field. Therefore, the improved mobility of ionic carriers is responsible for the conduction mechanism. For the same electrolytic sample, the relaxation frequency of concentrated electrolytes becomes higher owing to the stronger total polarization coming from the higher conductivity as well as the lower resistance in the electrolytes, which is obvious in the concentration above 10-4 M. With the same concentration, the acidic electrolytes represent the highest conductivity, which can be ascribed to the extra assistance of proton transfer mechanism between hydronium ions and water molecules. What’s more, all electrolytic solutions appear the so-called relaxation frequency at each peak value of dielectric loss due to relaxing total polarization inside the solution device. The relaxation frequency of acidic electrolytes also becomes higher because of the proton transfer, which results in the higher conductivity as well as the lower bulk resistance in the acidic electrolytic solutions. Finally, we derived an AC conductivity in the electrolytic solution base on a second-order Newton differential equation of motion, then solved an optimal numerical solution by applying the least square error method (LSEM). We found that the tendency of the frequency-dependent mobility in our experiment is highly correlated to the conventional literatures, especially in the lower end of the frequency, that is, approaching to DC condition, which is sufficient to prove the high potential of predicting ability of the theoretical model.

The results of this dissertation is expected to apply on the liquid circuit device development. We hope to further realize the ion movement from the experiment to seek the possibility of developing novel liquid devices with frequency-tunable dielectric constant. Based on this idea, a novel light valve with tunable amount of light output can be designed. That is, the gray scale can be changed. Then the conventional liquid crystal technology can be entirely replaced if the related technology has been well-developed.
Contents

口試委員會審定書.............................................................................i
英文簽名頁.......................................................................................ii
誌謝.................................................................................................iii
中文摘要..........................................................................................v
Abstract...........................................................................................vii
Contents..........................................................................................x
List of Tables...................................................................................xii
List of Figures.................................................................................xiii

Chapter 1 Introduction......................................................................1
1.1 The fundamental and classification of electrolytes.....................1
1.2 The basic applications of electrolytes.........................................3
1.3 Electrolytic analysis in electrochemical method..........................4
1.4 The organization of this doctoral dissertation..............................6

Chapter 2 Electrical impedance spectroscopy (EIS) method............9
2.1 The basic of EIS method..............................9
2.2 Basic theoretical model of the EIS..................12
2.3 The deficiency of EIS in the low-frequency regime...12
2.4 The electrical double layer (EDL)...................13

Chapter 3 Device fabrication and system architecture....21
3.1 Specific microfluidic device fabrication............21
3.2 Electrolytic sample decisionand.....................22
3.3 The high-resolution system architecture.............23

Chapter 4 Fundamental experimental results..............30
4.1 I. Confirmation of accuracy and repeatability.......30
4.2 II. Explanation of basic physical mechanism.........31

Chapter 5 Advanced experimental results.................43
5.1 III. The proton transfer of acidic electrolytes.....43
5.2 IV. Comparison of acidic, neutral and basic
electrolytes....................................46

Chapter 6 A novel mobility evaluation method............59
6.1 Model derivation from Newton differential
equation...........................................60
6.2 Parameter evaluation by least square error method..61

Chapter 7 Conclusion....................................66

References..............................................68
Publication List........................................74
Appendix................................................76
[1] Harris, William; Levey, Judith, eds. (1975). The New Columbia Encyclopedia (4th ed.). New York City: Columbia University. p. 155. ISBN 0-231035-721.
[2] McHenry, Charles, ed. (1992). The New Encyclopedia Britannica. 1 (15 ed.). Chicago: Encyclopedia Britannica, Inc. p. 587. ISBN 085-229553-7.
[3] Cillispie, Charles, ed. (1970). Dictionary of Scientific Biography (1 ed.). New York City: Charles Scribner''s Sons. pp. 296–302. ISBN 0-684101-122.
[4] Jiangshui Luo; Jin Hu; Wolfgang Saak; Rudiger Beckhaus; Gunther Wittstock; Ivo F. J. Vankelecom; Carsten Agert; Olaf Conrad (2011). "Protic ionic liquid and ionic melts prepared from methanesulfonic acid and 1H-1,2,4-triazole as high temperature PEMFC electrolytes". Journal of Materials Chemistry. 21: 10426–10436.
[5] Kamil Perzyna; Regina Borkowska; Jaroslaw Syzdek; Aldona Zalewska; Wladyslaw Wieczorek (2011). "The effect of additive of Lewis acid type on lithium–gel electrolyte characteristics". Electrochimica Acta. 57: 58–65.
[6] Syzdek J, Borkowska R, Perzyna K, Tarascon JM, Wieczorek W (2007). "Novel composite polymeric electrolytes with surface-modified inorganic fillers". Journal of Power Sources. 173 (2): 712–720.
[7] Syzdek J, Armand M, Marcinek M, Zalewska A, Żukowska G, Wieczorek W (2010). "Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytes". Electrochimica Acta. 55 (4): 1314–1322.
[8] Syzdek J, Armand M, Gizowska M, Marcinek M, Sasim E, Szafran M, Wieczorek W (2009). "Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—A novel approach". Journal of Power Sources. 194 (1): 66–72.
[9] Jiangshui Luo; Annemette H. Jensen; Neil R. Brooks; Jeroen Sniekers; Martin Knipper; David Aili; Qingfeng Li; Bram Vanroy; Michael Wubbenhorst; Feng Yan; Luc Van Meervelt; Zhigang Shao; Jianhua Fang; Zheng-Hong Luo; Dirk E. De Vos; Koen Binnemans; Jan Fransaer (2015). "1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells". Energy & Environmental Science. 8.
[10] Carter, C.W. Impedance of networks containing resistances and two reactances. Bell Sys. Tech. J. 4:387-401; 1925.
[11] Smith, P.H. Transmission line calculator. Electronics 12:29-31; 1939.
[12] Macdonald, J.R.; Schoonman, J.; Lehnen, A.P. Three dimensional perspective plotting and fitting of immittance data. Solid State lonics 5:137-140; 1981.
[13] Macdonald, J.R.; Garber, J.A. Analysis of impedance and admittance data for solids and liquids. J. Electrochem. Soc. 124:1022-1030; 1977.
[14] Macdonald, J.R., Impedance Spectroscopy, Annals of Biomedical Engineering, Vol. 20, pp. 289-305, 1992.
[15] A. G. Krischer, Capacitive properties of a gold/electrolyte interface, Lab Course Manual, Technical University of Munich. (https://www.ph.tum.de/academics/org/labs/fopra/docs/userguide-09.en.pdf)
[16] Model SR830 DSP Lock-In Amplifier User Manual. (http://www.thinksrs.com/downloads/PDFs/Manuals/SR830m.pdf)
[17] C. Iliescu, D. P. Poenar, and S. T. Selvan, Frequency dependence on the accuracy of electrical impedance spectroscopy measurements in microfluidic devices, Journal of Micromechanics and Microengineering, 20 (2010) 022001.
[18] Alabur Manjunath, Tegginakeri Deepa, Naraganahalli Karibasappa Supreetha, and Mohammed Irfan, Studies on AC electrical conductivity and dielectric properties of PVA/NH4NO3 solid polymer electrolyte films, Advances in Materials Physics and Chemistry, 2015, 5, 295–301.
[19] A.V. Lesikar, C.J. Simmons and C.T. Moynihan, The Debye-Falkenhagen Theory of Electrical Relaxation In Glass, Journal of Non-Crystalline Solids 40 (1980) 171-188.
[20] A. Chandra, B. Bagchi, Frequency dependence of ionic conductivity of electrolyte solutions, Journal Of Chemical Physics, 112 (4), 2000, 1876.
[21] Atif Islam, Zahid Imran, Tariq Yasin, Nafisa Gull, Shahzad Maqsood Khan, Muhammad Shafiq, Aneela Sabir, Muhammad Azeem Munawar, Muhammad Hamid Raza, and Tahir Jamil, An investigation of AC impedance and dielectric spectroscopic properties of conducting chitosan-silane crosslinked-poly (vinyl alcohol) blended films, Materials Research, 2015, 18(6), 1256–1263.
[22] Z. Osman, M.I. Mohd Ghazali, L. Othman, and K.B. Md Isa, AC ionic conductivity and DC polarization method of lithium ion transport in PMMA–LiBF4 gel polymer electrolytes, Results in Physics, 2, 2012,1–4.
[23] S. Navaratnam, K. Ramesh, S. Ramesh, A. Sanusi, W.J. Basirun, and A.K. Arof, Transport mechanism studies of chitosan electrolyte systems, Electrochimica Acta, 175 (2015) 68–73.
[24] A. C. Nwanya, C. I. Amaechi, A. E. Udounwa, R. U. Osuji, M. Maaza, and F. I. Ezema, Complex impedance and conductivity of agar-based ion-conducting polymer electrolytes, Applied Physics A, 2015, 119:387–396.
[25] Mayank Pandey, Girish M. Joshi1, Kalim Deshmukh, and Jamil Ahmad, Impedance spectroscopy and conductivity studies of CdCl2 doped polymer electrolyte, Advanced Materials Letters, 2015, 6(2), 165–171.
[26] R. Gulich, A M. Kohler, A P. Lunkenheimer A and A. Loidl, Dielectric spectroscopy on aqueous electrolytic solutions, Radiation and Environmental Biophysics (2009) 48:107–114.
[27] S. Ramesh, A.H. Yahaya, and A.K. Arof, Dielectric behaviour of PVC-based polymer electrolytes, Solid State Ionics, 152–153, 2002, 291–294.
[28] K. J. Laidler, J. H. Meiser, and B. C. Sanctuary, Physical Chemistry, 2nd Edition, 1995, 268-274.
[29] Adela Bardos, Richard N. Zare, and Karin Markides, Inductive behavior of electrolytes in AC conductance measurements, Chemical Physics Letters, 2005, 402, 274–278.
[30] Frank De Bisschop, On the presumed inductive behaviour of electrolyte solutes in low frequency conductance. Part I: Deficiency of the employed measurement technique, Chemical Physics Letters, 478 (2009) 85–88.
[31] Frank De Bisschop, On the presumed inductive behaviour of electrolyte solutes in low frequency conductance. Part II: Proposal of an alternate technique for AC conductance measurements, Chemical Physics Letters, 483 (2009) 172–176.
[32] T.M.W.J. Bandara and B.-E. Mellander (2011). Evaluation of mobility, diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes based on a new model for dielectric response, Ionic Liquids: Theory, Properties, New Approaches, Prof. Alexander Kokorin (Ed.), ISBN: 978-953-307-349-1.
[33] Dillip K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes, International Journal of Electrochemical Science, 3, 2008, 597–608.
[34] Colin A. Wraight, Chance and design – Proton transfer in water, channels and bioenergetic proteins, Biochimica et Biophysica Acta, 1757 (2006) 886–912.
[35] Ali Hassanali, Federico Giberti, Jerome Cuny, Thomas D. Kuhne, and Michele Parrinello, Proton transfer through the water gossamer, PNAS, August 20, 2013, Vol. 110, No. 34,13723–13728.
[36] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd Edn, 2001, pp.66–70.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top