|
[1]H. H. Hsieh and L. H. Lu, “A 40-GHz Low-Noise Amplifier With a Positive-Feedback Network in 0.18- μm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1895-1902, Aug. 2009. [2]M. Hossain and A. C. Carusone, “A 19-GHz broadband amplifier using a gm-boosted cascode in 0.18-μm CMOS,” Proc. IEEE CICC, pp. 829– 832, Sep. 2006. [3]S. Shahramian, S. P. Voinigescu, and A. C. Carusone, “A 30-GS/sec track and hold amplifier in 0.13-μm CMOS technology,” Proc. IEEE CICC, pp. 493–496, Sep. 2006. [4]T. O. Dickson, K. H. Yau, T. Chalvatzis, A. M. Mangan, E. Laskin, R. Beerkens, P. Westergaard, M. Tazlauanu, M.-T. Yang, and S. P. Voinigescu, “The invariance of characteristic current densities in nanoscale mosfets and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks,” IEEE J. Solid-State Circuits, vol. 41, no. 8, Aug. 2006. [5]T. H. Lee, Planar microwave engineering: a practical guide to theory, measurement, and circuits. Cambridge University Press, 2004. [6]H. Tran, F. Pera, D. S. McPherson, D. Viorel, and S. P. Voinigescu, “6-kΩ 43-Gb/s differential transimpedance-limiting amplifier with autozero feedback and high dynamic range,” IEEE J. Solid-State Circuits, vol. 39, no. 10, Oct. 2004. [7]G. E. Zhang and M. M. Green, “A 10 Gb/s BiCMOS adaptive cable equalizer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, Nov. 2005. [8]Y.-K. Hsieh, J.-L Kuo, H. Wang, and L.-H. Lu, “A 60 GHz broadband low-noise amplifier with variable-gain control in 65 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 610-612, Nov. 2011. [9]B. Huang, K. Lin, H. Wang, “Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp.3049-3059, Dec. 2009. [10]S. Guo, T. Xi, P. Gui, J. Zhang, W. Choi, K.-K. O, Y. Fan, D. Huang, R.Gu, and M. Morgan, “54 GHz CMOS LNAs with 3.6 dB NF and 28.2 dB Gain using Transformer Feedback Gm-boosting Technique,” IEEE A-SSCC Dig. Tech. Papers, Kaohsiung, Taiwan, Nov. 2014, pp. 185–188. [11]E. S. Atalla, F. Zhang, P. T. Balsara, A. Bellaouar, S. Ba and K. Kiasaleh, “Time-Domain Analysis of Passive Mixer Impedance: A Switched-Capacitor Approach,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 2, pp. 347-359, Feb. 2017. [12]M. Rahman and R. Harjani, “A Sub-1-V 194-μW 31-dB FOM 2.3–2.5-GHz Mixer-First Receiver Frontend for WBAN With Mutual Noise Cancellation,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 4, pp. 1102-1109, Apr. 2016. [13]D.-H. Seo, J.-Y. Lee and T.-Y. Yun, “Active and Passive Combined Mixer for Low Flicker Noise and Low dc Offset,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 7, pp. 463-465, Jul. 2015. [14]K.-H. Liang, H.-Y. Chang, and Y.-J. Chan, “A 0.5–7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-μm CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 7, pp. 531–533, July, 2007. [15]C. Hermann, M. Tiebout, and H. Klar, “A 0.6-V 1.6-mW transformer-based 2.5-GHz downconversion mixer with 5.4-dB gain and 2.8-dBm IIP3 in 0.13- m CMOS,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 2, pp. 488–495, Feb. 2005. [16]V. Vidojkovic, J. van der Tang, A. Leeuwenburgh, and A. H. M. van Roermund, “A low-voltage folded-switching mixer in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1259–1264, Jun. 2005. [17]L. Zhang et al., “A Reconfigurable Sliding-IF Transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN Hubs With Only 21% Tuning Range VCO,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2705-2716, Nov. 2013. [18]F. M. Mahmoud and M. A. Abdelghany, “Low flicker-noise RF CMOS gilbert-cell mixer for 2.4GHz wireless communication systems,” 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, pp. 1158-1161, 2016. [19]M. T. Terrovitis and R. G. Meyer, “Noise in current-commutating CMOS mixers,” in IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 772-783, Jun. 1999. [20]C.-Y. Wang and J.-H. Tsai, “A 51 to 65 GHz Low-Power Bulk-Driven Mixer Using 0.13 μm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 8, pp. 521-523, Aug. 2009. [21]W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu and T.-W. Huang, “A 453 uW 53 – 70-GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1903-1912, May, 2013. [22]H.-K. Chiou and H.-T. Chou, “An Ultra-Low Power V-Band Source-Driven Down-Conversion Mixer With Low-Loss and Broadband Asymmetrical Broadside-Coupled Balun in 90-nm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2620-2631, July, 2013. [23]S. Kong, C. Y. Kim and S. Hong, “A K-Band UWB Low-Noise CMOS Mixer With Bleeding Path Gm -Boosting Technique,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 3, pp. 117-121, Mar. 2013. [24]W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang and H. Wang, “1024-QAM High Image Rejection E -Band Sub-Harmonic IQ Modulator and Transmitter in 65-nm CMOS Process,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 11, pp. 3974-3985, Nov. 2013. [25]W. Liu, H. Liu, R. Wang, Y. Li, X. Cheng and Y. Z. Xiong, “A W-band direct-conversion I-Q mixer in 0.13μm SiGe BiCMOS technology,” 2016 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, 2016, pp. 1-4. [26]J. A. Hou and Y. H. Wang, “Design of Compact 90o and 180o Couplers With Harmonic Suppression Using Lumped-Element Bandstop Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 11, pp. 2932-2939, Nov. 2010. [27]S. K. Hampel, O. Schmitz, M. Tiebout, K. Mertens and I. Rolfes, “9-GHz Wideband CMOS RX and TX Front-Ends for Universal Radio Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 4, pp. 1105-1116, Apr. 2012. [28]I. Fabiano, M. Sosio, A. Liscidini and R. Castello, “SAW-less analog front-end receivers for TDD and FDD,” 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 82-83. [29]I. Fabiano, M. Sosio, A. Liscidini and R. Castello, “SAW-Less Analog Front-End Receivers for TDD and FDD,” IEEE J. Solid-State Circuits,, vol. 48, no. 12, pp. 3067-3079, Dec. 2013. [30]T. T. Nguyen; A. Riddle; K. Fujii; A. V. Pham, “Development of Wideband and High IIP3 Millimeter-Wave Mixers,” IEEE Transactions on Microwave Theory and Techniques , vol.PP, no.99, pp.1-9. [31]W. T. Li, H. Y. Yang, Y. C. Chiang, J. H. Tsai, M. H. Wu, and T. W. Huang, “A 453-μW 53 - 70-GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1903-1912, May 2013. [32]F. Zhu et al., “A Broadband Low-Power Millimeter-Wave CMOS Downconversion Mixer With Improved Linearity,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 3, pp. 138-142, March 2014. [33]K. H. Liang, H. Y. Chang and Y. J. Chan, “A 0.5–7.5 GHz Ultra Low-Voltage Low-Power Mixer Using Bulk-Injection Method by 0.18-μm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 7, pp. 531-533, July 2007. [34]M. Rahman and R. Harjani, “A Sub-1-V 194-μW 31-dB FOM 2.3–2.5-GHz Mixer-First Receiver Frontend for WBAN With Mutual Noise Cancellation,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 4, pp. 1102-1109, April 2016. [35]S. Kim and H. Shin, “Design of 80 – 1150 MHz CMOS LNA-less receiver for long-range wireless sensor network applications,” 2014 International SoC Design Conference (ISOCC), Jeju, 2014, pp. 84-85. [36]B. Razavi, RF Microelectronics, 2nd ed., New Jersey: Prentice Hall, 2012. [37]N. Stanica, A. Balankutty, P. R. Kinget and Y. Tsividis, “A 2.4-GHz ISM-Band Sliding-IF Receiver With a 0.5-V Supply,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1138-1145, May 2008. [38]“On the Direct Conversion Receiver -- A Tutorial,” [Online]. Available: http://www.microwavejournal.com/articles/3226-on-the-direct-conversion-receiver-a-tutorial. [39]W. K. Chong, H. Ramiah and N. Vitee, “A 0.12 mm2- 2.4-GHz CMOS Inductorless High Isolation Subharmonic Mixer With Effective Current-Reuse Transconductance,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 8, pp. 2427-2437, Aug. 2015. [40]M. M. Mohsenpour and C. E. Saavedra, “Method to Improve the Linearity of Active Commutating Mixers Using Dynamic Current Injection,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4624-4631, Dec. 2016. [41]H. Zijie and K. Mouthaan, “A 1–10 GHz RF and wideband IF crosscoupled Gilbert mixer in 0.13-μm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 11, pp. 726–730, Nov. 2013. [42]“What is 5G? Everything You Need to Know – A Definition,” [Online]. Available: https://www.sdxcentral.com/5g/definitions/what-is-5g/ [43]“4G,” [Online]. Available: https://zh.wikipedia.org/wiki/4G [44]“EU and South Korea plan for 5G-connected smart homes and cars,” [Online]. Available: https://recombu.com/digital/article/eu-and-south-korea-plan-for-5g-connected-smart-homes-and-cars_M13292.html [45]C. Choi, J. H. Son, O. Lee and I. Nam, “A +12-dBm OIP3 60-GHz RF Downconversion Mixer With an Output-Matching, Noise- and Distortion-Canceling Active Balun for 5G Applications,” in IEEE Microwave and Wireless Components Letters, vol. 27, no. 3, pp. 284-286, March 2017. [46]B. Sadhu et al., “7.2 A 28GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication,” 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 128-129.
|