跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪福聯
研究生(外文):Fu-Lian Hung
論文名稱:應用於次世代無線通訊之射頻前端接收機電路
論文名稱(外文):Receiver RF Front-end Circuits for Next-generationWireless Communication
指導教授:林宗賢林宗賢引用關係
指導教授(外文):Tsung-Hsien Lin
口試委員:劉深淵陳筱青林永裕
口試委員(外文):Shen-Iuan LiuHsiao-Chin ChenYung-Yu Lin
口試日期:2017-04-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:101
中文關鍵詞:射頻前端電路低雜訊放大器混頻器
外文關鍵詞:RF front-endLow-noise amplifierMixer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文實現了適用於可調動式中頻接收機之高頻前端電路,電路包含了低雜訊放大器、第一級的降頻混頻器還有一個I/Q 的混頻器做為第二級的降頻混頻器。
在高頻前端電路的第一級為一個可調增益式的低雜訊放大器。該可調式增益為避免輸入訊號過大而造成電路飽和。本作品使用台積電40 奈米製程,系統功耗為15毫瓦,在頻率為360 億赫茲時有最大的增益為10 dB, 噪音雜訊為5.8 dB。增益調整的範圍為10 dB。
緊接在後的是一個將訊號由頻率 360 億赫茲降轉到70 億赫茲的降頻混頻器。
並且採用分流電流的方式來降低雜訊指數。本作品使用台積電40 奈米製程,系統
功耗為4.5 毫瓦,由於一些EM 模型上的不確定造成增益最大為-20.8 dB,輸入1
dB 增益壓縮點為 6 dBm。
最後一級為一個具 I/Q 相位調變的降頻混器,該混頻器將訊號由頻率約70 億
赫茲降轉到 10 億赫茲以內。此外,還實現了一個除頻器來產生所需的四個相位。
本作品使用台積電40 奈米製程,系統功耗包含量測所需的緩衝器為10 毫瓦,增
益最大為17 dB,輸入1 dB 增益壓縮點為 -14 dBm。
In this thesis, an RF front-end which is a sliding IF receiver including a low-noise amplifier, a first stage down-conversion mixer and an I/Q mixer as the second stage are proposed in a 1.1-V supply. The first stage of proposed RF front-end presents a variable gain control low noise amplifier to keep different input magnitude from saturation of circuit. This work is fabricated in TSMC 40-nm CMOS technology. The total power consumption is 15 mW, the highest gain is 10 dB and noise figure is 5.8 dB at 36 GHz. The variable gain control can adjust the gain more than 10 dB.
The following stage is a down-conversion mixer which converts frequency from 36 GHz to 7 GHz. The work introduces a current-bleeding technique to improve the noise figure. This work is fabricated in TSMC 40-nm CMOS technology. The total power consumption is 4.5 mW. With some EM model uncertain, the conversion gain is -20.8 dB
and input P1dB is 6 dBm.
The latest stage is an I/Q down-conversion mixer which converts frequency from 7 GHz to below 1 GHz. Besides, to generate four phase, a CML divider is also implemented. This work is fabricated in TSMC 40 nm CMOS technology. The total power consumption of I/Q mixer including the buffer for measurement is 10 mW. The conversion gain is 17 dB, NF is 8.88 dB and the input P1dB is -14 dBm.
中文審定書 i
英文審定書 iii
摘要 vii
Abstract ix
List of Figures xiii
List of Tables xvii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Overview 3
Chapter 2 Introduction to RF Front-end 5
2.1 Fundamentals of RF Front-end Systems 5
2.1.1 Noise Due to Frequency Transforming 6
2.2 Architectures of RF Front-end Circuits 7
2.2.1 Direct-conversion Front-end Circuits 7
2.2.2 RF Front-end with Dual IF 8
2.2.3 RF Front-end with Quadrature Down-conversion 9
2.2.4 RF Front-end without LNA 10
2.3 Summary and Specification of the Each Stage 11
Chapter 3 Proposed Low-Noise Amplifier with Positive-Feedback Technique and Variable-gain Control 13
3.1 Introduction 13
3.2 System Architecture 14
3.3 Circuit Implementation 17
3.3.1 Inductive-peaking Technique 17
3.3.2 Analysis of the Inductive-peaking Technique 20
3.3.3 Analysis of Gain Control Mechanism 22
3.3.4 Simulation Results Summary 26
3.4 Experimental Results 27
3.4.1 Die Photo 27
3.4.2 Measurement Environment Setup 27
3.4.3 PCB Design 29
3.4.4 Measured Results 30
3.5 Discussion 36
Chapter 4 Proposed 1st-stage Down-Conversion Mixer with Current-Bleeding Technique 39
4.1 Introduction 39
4.2 Proposed Architecture 41
4.3 Analysis of Noise in Mixer 42
4.3.1 Noise from the RF Stage 44
4.3.2 Thermal Noise Generated in the Switching Pair 45
4.4 Circuit Implementation 48
4.4.1 Linearity and Gain Analysis of Mixer with Current-Bleeding Source 48
4.4.2 RF and LO Balun 52
4.4.3 Simulation Results Summary 55
4.5 Experimental Results 57
4.5.1 Die Photo 57
4.5.2 Measurement Environment Setup 58
4.5.3 PCB Design 59
4.5.4 Measured Results 60
4.5.5 Discussion 65
Chapter 5 Proposed 2nd-stage Down-Conversion Mixer with Source-driven Technique 67
5.1 Introduction 67
5.2 Proposed Architecture 69
5.3 Circuit Implementation 71
5.3.1 Source-driven Mixer 71
5.3.2 RF and LO Balun 74
5.3.3 Simulation Results Summary 78
5.4 Experimental Results 80
5.4.1 Die Photo 80
5.4.2 Measurement Environment Setup 80
5.4.3 PCB Design 83
5.4.4 Measured Results 84
5.5 Discussion 91
Chapter 6 Conclusions and Future Works 93
6.1 Conclusions 93
6.2 Future Works 93
References 95
[1]H. H. Hsieh and L. H. Lu, “A 40-GHz Low-Noise Amplifier With a Positive-Feedback Network in 0.18- μm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1895-1902, Aug. 2009.
[2]M. Hossain and A. C. Carusone, “A 19-GHz broadband amplifier using a gm-boosted cascode in 0.18-μm CMOS,” Proc. IEEE CICC, pp. 829– 832, Sep. 2006.
[3]S. Shahramian, S. P. Voinigescu, and A. C. Carusone, “A 30-GS/sec track and hold amplifier in 0.13-μm CMOS technology,” Proc. IEEE CICC, pp. 493–496, Sep. 2006.
[4]T. O. Dickson, K. H. Yau, T. Chalvatzis, A. M. Mangan, E. Laskin, R. Beerkens, P. Westergaard, M. Tazlauanu, M.-T. Yang, and S. P. Voinigescu, “The invariance of characteristic current densities in nanoscale mosfets and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks,” IEEE J. Solid-State Circuits, vol. 41, no. 8, Aug. 2006.
[5]T. H. Lee, Planar microwave engineering: a practical guide to theory, measurement, and circuits. Cambridge University Press, 2004.
[6]H. Tran, F. Pera, D. S. McPherson, D. Viorel, and S. P. Voinigescu, “6-kΩ 43-Gb/s differential transimpedance-limiting amplifier with autozero feedback and high dynamic range,” IEEE J. Solid-State Circuits, vol. 39, no. 10, Oct. 2004.
[7]G. E. Zhang and M. M. Green, “A 10 Gb/s BiCMOS adaptive cable equalizer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, Nov. 2005.
[8]Y.-K. Hsieh, J.-L Kuo, H. Wang, and L.-H. Lu, “A 60 GHz broadband low-noise amplifier with variable-gain control in 65 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 610-612, Nov. 2011.
[9]B. Huang, K. Lin, H. Wang, “Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp.3049-3059, Dec. 2009.
[10]S. Guo, T. Xi, P. Gui, J. Zhang, W. Choi, K.-K. O, Y. Fan, D. Huang, R.Gu, and M. Morgan, “54 GHz CMOS LNAs with 3.6 dB NF and 28.2 dB Gain using Transformer Feedback Gm-boosting Technique,” IEEE A-SSCC Dig. Tech. Papers, Kaohsiung, Taiwan, Nov. 2014, pp. 185–188.
[11]E. S. Atalla, F. Zhang, P. T. Balsara, A. Bellaouar, S. Ba and K. Kiasaleh, “Time-Domain Analysis of Passive Mixer Impedance: A Switched-Capacitor Approach,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 2, pp. 347-359, Feb. 2017.
[12]M. Rahman and R. Harjani, “A Sub-1-V 194-μW 31-dB FOM 2.3–2.5-GHz Mixer-First Receiver Frontend for WBAN With Mutual Noise Cancellation,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 4, pp. 1102-1109, Apr. 2016.
[13]D.-H. Seo, J.-Y. Lee and T.-Y. Yun, “Active and Passive Combined Mixer for Low Flicker Noise and Low dc Offset,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 7, pp. 463-465, Jul. 2015.
[14]K.-H. Liang, H.-Y. Chang, and Y.-J. Chan, “A 0.5–7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-μm CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 7, pp. 531–533, July, 2007.
[15]C. Hermann, M. Tiebout, and H. Klar, “A 0.6-V 1.6-mW transformer-based 2.5-GHz downconversion mixer with 5.4-dB gain and 2.8-dBm IIP3 in 0.13- m CMOS,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 2, pp. 488–495, Feb. 2005.
[16]V. Vidojkovic, J. van der Tang, A. Leeuwenburgh, and A. H. M. van Roermund, “A low-voltage folded-switching mixer in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1259–1264, Jun. 2005.
[17]L. Zhang et al., “A Reconfigurable Sliding-IF Transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN Hubs With Only 21% Tuning Range VCO,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2705-2716, Nov. 2013.
[18]F. M. Mahmoud and M. A. Abdelghany, “Low flicker-noise RF CMOS gilbert-cell mixer for 2.4GHz wireless communication systems,” 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, pp. 1158-1161, 2016.
[19]M. T. Terrovitis and R. G. Meyer, “Noise in current-commutating CMOS mixers,” in IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 772-783, Jun. 1999.
[20]C.-Y. Wang and J.-H. Tsai, “A 51 to 65 GHz Low-Power Bulk-Driven Mixer Using 0.13 μm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 8, pp. 521-523, Aug. 2009.
[21]W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu and T.-W. Huang, “A 453 uW 53 – 70-GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1903-1912, May, 2013.
[22]H.-K. Chiou and H.-T. Chou, “An Ultra-Low Power V-Band Source-Driven Down-Conversion Mixer With Low-Loss and Broadband Asymmetrical Broadside-Coupled Balun in 90-nm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2620-2631, July, 2013.
[23]S. Kong, C. Y. Kim and S. Hong, “A K-Band UWB Low-Noise CMOS Mixer With Bleeding Path Gm -Boosting Technique,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 3, pp. 117-121, Mar. 2013.
[24]W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang and H. Wang, “1024-QAM High Image Rejection E -Band Sub-Harmonic IQ Modulator and Transmitter in 65-nm CMOS Process,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 11, pp. 3974-3985, Nov. 2013.
[25]W. Liu, H. Liu, R. Wang, Y. Li, X. Cheng and Y. Z. Xiong, “A W-band direct-conversion I-Q mixer in 0.13μm SiGe BiCMOS technology,” 2016 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, 2016, pp. 1-4.
[26]J. A. Hou and Y. H. Wang, “Design of Compact 90o and 180o Couplers With Harmonic Suppression Using Lumped-Element Bandstop Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 11, pp. 2932-2939, Nov. 2010.
[27]S. K. Hampel, O. Schmitz, M. Tiebout, K. Mertens and I. Rolfes, “9-GHz Wideband CMOS RX and TX Front-Ends for Universal Radio Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 4, pp. 1105-1116, Apr. 2012.
[28]I. Fabiano, M. Sosio, A. Liscidini and R. Castello, “SAW-less analog front-end receivers for TDD and FDD,” 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 82-83.
[29]I. Fabiano, M. Sosio, A. Liscidini and R. Castello, “SAW-Less Analog Front-End Receivers for TDD and FDD,” IEEE J. Solid-State Circuits,, vol. 48, no. 12, pp. 3067-3079, Dec. 2013.
[30]T. T. Nguyen; A. Riddle; K. Fujii; A. V. Pham, “Development of Wideband and High IIP3 Millimeter-Wave Mixers,” IEEE Transactions on Microwave Theory and Techniques , vol.PP, no.99, pp.1-9.
[31]W. T. Li, H. Y. Yang, Y. C. Chiang, J. H. Tsai, M. H. Wu, and T. W. Huang, “A 453-μW 53 - 70-GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1903-1912, May 2013.
[32]F. Zhu et al., “A Broadband Low-Power Millimeter-Wave CMOS Downconversion Mixer With Improved Linearity,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 3, pp. 138-142, March 2014.
[33]K. H. Liang, H. Y. Chang and Y. J. Chan, “A 0.5–7.5 GHz Ultra Low-Voltage Low-Power Mixer Using Bulk-Injection Method by 0.18-μm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 7, pp. 531-533, July 2007.
[34]M. Rahman and R. Harjani, “A Sub-1-V 194-μW 31-dB FOM 2.3–2.5-GHz Mixer-First Receiver Frontend for WBAN With Mutual Noise Cancellation,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 4, pp. 1102-1109, April 2016.
[35]S. Kim and H. Shin, “Design of 80 – 1150 MHz CMOS LNA-less receiver for long-range wireless sensor network applications,” 2014 International SoC Design Conference (ISOCC), Jeju, 2014, pp. 84-85.
[36]B. Razavi, RF Microelectronics, 2nd ed., New Jersey: Prentice Hall, 2012.
[37]N. Stanica, A. Balankutty, P. R. Kinget and Y. Tsividis, “A 2.4-GHz ISM-Band Sliding-IF Receiver With a 0.5-V Supply,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1138-1145, May 2008.
[38]“On the Direct Conversion Receiver -- A Tutorial,” [Online].
Available: http://www.microwavejournal.com/articles/3226-on-the-direct-conversion-receiver-a-tutorial.
[39]W. K. Chong, H. Ramiah and N. Vitee, “A 0.12 mm2- 2.4-GHz CMOS Inductorless High Isolation Subharmonic Mixer With Effective Current-Reuse Transconductance,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 8, pp. 2427-2437, Aug. 2015.
[40]M. M. Mohsenpour and C. E. Saavedra, “Method to Improve the Linearity of Active Commutating Mixers Using Dynamic Current Injection,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4624-4631, Dec. 2016.
[41]H. Zijie and K. Mouthaan, “A 1–10 GHz RF and wideband IF crosscoupled Gilbert mixer in 0.13-μm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 11, pp. 726–730, Nov. 2013.
[42]“What is 5G? Everything You Need to Know – A Definition,” [Online].
Available: https://www.sdxcentral.com/5g/definitions/what-is-5g/
[43]“4G,” [Online].
Available: https://zh.wikipedia.org/wiki/4G
[44]“EU and South Korea plan for 5G-connected smart homes and cars,” [Online].
Available: https://recombu.com/digital/article/eu-and-south-korea-plan-for-5g-connected-smart-homes-and-cars_M13292.html
[45]C. Choi, J. H. Son, O. Lee and I. Nam, “A +12-dBm OIP3 60-GHz RF Downconversion Mixer With an Output-Matching, Noise- and Distortion-Canceling Active Balun for 5G Applications,” in IEEE Microwave and Wireless Components Letters, vol. 27, no. 3, pp. 284-286, March 2017.
[46]B. Sadhu et al., “7.2 A 28GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication,” 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 128-129.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊