|
[1-1]D. Kahng, and M. M. Atalla, “Silicon-silicon dioxide field induced surface devices,” in IRE-AIEEE Solid-State Device Research Conference, (Carnegie Inst. of Tech., Pittsburgh, PA), 1960. [1-2]G. E. Moore, “Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965),” Proc. IEEE, vol. 86, no. 1, pp. 82-85, Jan, 1998. [1-3]C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyun, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roester, J. Sanford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, G. Weber, P. Yashar, K. Zawadzki, K. Mistry, “A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors,” Symp. on VLSI Tech., pp. 131-132, Jun. 2012. [1-4]Aaron Thean, “Options Beyond FinFETs at 5nm Node,” IEEE International electron Device Meeting, short course, 2016. [1-5]C. W. Liu, Mikael Östling, and J. B. Hannon. "New materials for post-Si computing." MRS bulletin 39.08 (2014): 658-662. 000. [2-1]K. J. Kuhn, A. Murthy, R. Kotlyar, and M. Kuhn, “Past, Present and Future: SiGe and CMOS Transistor Scaling,” ECS Trans. , volume 33, issue 6, 3-17, 2010 [2-2]C.-H. Jan, U. Bhattacharya, R. Brain, S .- J. Choi, G. Curello, G. Gupta, W. Hafez, M. Jang, M. Kang, K. Komeyli, T. Leo, N. Nidhi, L. Pan, J. Park, K. Phoa, A. Rahman, C. Staus, H. Tashiro, C. Tsai, P. Vandervoorn, L. Yang, J.-Y. Yeh and P. Bai, “A 22nm SoC Platform Technology Featuring 3-D Tri-Gate and High-k/Metal Gate,Optimized for Ultra Low Power, High Performance and High Density SoC Applications,” IEDM Tech. Dig., 2012, pp. 44–47. [2-3]Seong-Dong Kim, Cheol-Min Park, and Jason C. S. Woo, “Advanced Model and Analysis of Series Resistance for CMOS Scaling Into Nanometer Regime—Part II: Quantitative Analysis,” IEEE Trans. on Electron Devices, vol. 49, no. 3,pp. 467–472, Mar. 2002. [2-4]A. V.-Y. Thean, D. Yakimets, T. H. Bao, P. Schuddinck, S. Sakhare, M. G. Bardon, A. Sibaja- Hernandez, I. Ciofi, G. Eneman, A. Veloso, J. Ryckaert, P. Raghavan, A. Mercha, A. Mocuta, Z. Tokei, D. Verkest, P. Wambacq, K. De Meyer, and N. Collaert, “Vertical device architecture for 5 nm and beyond: Device & circuit implications,” in Symp. VLSI Technol. Dig. Tech. Papers, Jun. 2015, pp. T26–T27. DOI: 10.1109/VLSIT.2015.7223689 [2-5]C.-N. Ni, X. Li, S. Sharma, K. V. Rao, M. Jin, C. Lazik, V. Banthia, B. Colombeau, N. Variam, A. Mayur, H. Chung, R. Hung, and A. Brand, “Ultra-low contact resistivity with highly doped Si:P contact for nMOSFET,” in Symp. VLSI Technol. Dig. Tech. Papers, Jun. 2015, pp. 118–119. DOI: 10.1109/VLSIT.2015.7223711. [2-6]Reza Arghavani, Pan Yang, Kaihan Ashtiani, Harmeet Singh and Dave Hemker, "Low Resistance Contacts to Enable 5 nm Node Technology: Patterning, Etch, Clean, Metallization and Device Performance", IEEE International Electron Device Meeting, short course, 2016. [2-7]Tomonori Nishimura, Koji Kita, and Akira Toriumi. "Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface." Applied Physics Letters 91.12 (2007): 123123. [2-8]Bin Yang, J.-Y. Jason Lin, Suyog Gupta, Arunanshu Roy, Shurong Liang, W. P. Maszara, Yoshio Nishi, and Krishna Saraswat, “Low-Contact-Resistivity Nickel Germanide Contacts on n+Ge with Phosphorus/Antimony Co-Doping and Schottky Barrier Height Lowering” ISTDM, 2012,session 9.5 [2-9]Hidenori Miyoshi, Tetsuji Ueno, Koji Akiyam, Yoshihiro Hirota, and Takanobu Kaitsuka, "In-situ contact formation for ultra-low contact resistance NiGe using carrier activation enhancement (CAE) techniques for Ge CMOS." VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on. IEEE, 2014. [2-10]Yen-Chun Fu, William Hsu, Yen-Ting Chen, Huang-Siang Lan, Cheng-Han Lee, Hung-Chih Chang, Hou-Yun Lee, Guang-Li Luo, Chao-Hsin Chien, C. W. Liu, Chenming Hu, and Fu-Liang Yang, "High mobility high on/off ratio CV dispersion-free Ge n-MOSFETs and their strain response." Electron Devices Meeting (IEDM), 2010 IEEE International. IEEE, 2010. [2-11]C. H. Lee, T. Nishimura, T. Tabata, S. K. Wang, K. Nagashio, K. Kita, and A. Toriumi, “Ge MOSFETs Performance: Impact of Ge Interface Passivation” IEDM Tech. Dig., 2010, pp. 18-1. [2-12]Bahniman Ghosh, Xiao-Feng Fan, Leonard F. Register and Sanjay K. Banerjee, "Monte Carlo study of remote Coulomb and remote surface roughness scattering in nanoscale Ge PMOSFETs with ultrathin high-κ dielectrics." Solid-state electronics 50.2 (2006): 248-253. [2-13]T. Nishimura, C. H. Lee, S. K. Wang, T. Tabat, K. Kita, K. Nagashio and A. Toriumi, "Electron mobility in high-k Ge-MISFETs goes up to higher." VLSI Technology (VLSIT), 2010 Symposium on. IEEE, 2010. [2-14]S. Takagi, R. Zhang, S.-H Kim, N. Taoka, M. Yokoyama, J.-K. Suh, R. Suzuki and M. Takenaka, "MOS interface and channel engineering for high-mobility Ge/III-V CMOS." Electron Devices Meeting (IEDM), 2012 IEEE International. IEEE, 2012. [2-15]Rui Zhang, Takashi Iwasaki, Noriyuki Taoka, Mitsuru Takenaka, and Shinichi Takagi, "High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation" IEEE Transactions on Electron Devices 59.2 (2012): 335-341. [2-16]Z. H. Lu, "Air-stable Cl-terminated Ge(111)," Appl. Phys. Lett., vol. 68, nm.4, p.520, 1996. [2-17]Yoshiki Kamata, Tsunehiro Ino, Masato Koyama, and Akira Nishiyama, "Improvement in C-V characteristics of Ge metal-oxide semiconductor capacitor by H2O2 incorporated HCl pretreatment." Applied Physics Letters 92.6 (2008): 063512. [2-18]Shiyu Sun,Yun Sun, Zhi Liu, Dong-Ick Lee, Samuel Peterson, and Piero Pianetta, "Surface termination and roughness of Ge (100) cleaned by HF and HCl solutions." Applied Physics Letters 88.2 (2006): 021903. [2-19]Sheng Kai Wang, Koji Kita, Choong Hyun Lee, Toshiyuki Tabata, Tomonori Nishimura, Kosuke Nagashio, and Akira Toriumi. "Desorption kinetics of GeO from GeO 2/Ge structure." Journal of applied physics 108.5 (2010): 054104. [2-20]Cheng-Ming Lin, Hung-Chih Chang, Yen-Ting Chen, I-Hsieh Wong, Huang-Siang Lan, Shih-Jan Luo, Jing-Yi Lin, Yi-Jen Tseng, C. W. Liu, Chenming Hu, and Fu-Liang Yang "Interfacial layer-free ZrO2 on Ge with 0.39-nm EOT, κ∼ 43,∼ 2×10− 3 A/cm2 gate leakage, SS= 85 mV/dec, Ion/Ioff= 6×105, and high strain response." Electron Devices Meeting (IEDM), 2012 IEEE International. IEEE, 2012. [2-21]J. T. Law, and P. S. Meigs. "Rates of oxidation of germanium." Journal of The Electrochemical Society 104.3 (1957): 154-159. [2-22]Takashi Sasada, Yosuke Nakakita, Mitsuru Takenaka, and Shinichi Takagi, "Surface orientation dependence of interface properties of GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation." Journal of Applied Physics 106.7 (2009): 073716. [2-23]E. H. Nicollian and J. R. Brews, MOS Physics and Technology, Wiley, New York, 2003. [2-24]Yu-Lin Chao, and Jason CS Woo. "Germanium n+/p Diodes: A Dilemma Between Shallow Junction Formation and Reverse Leakage Current Control." IEEE Transactions on Electron Devices 57.3 (2010): 665-670. [2-25]Seong-Dong Kim, Cheol-Min Park, and Jason CS Woo. "Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100-nm SOI CMOS." IEEE transactions on electron devices 49.10 (2002): 1748-1754. [2-26]Hideki Murakami, Shinya Hamada, Takahiro Ono, Kuniaki Hashimoto, Akio Ohta, Hiroaki Hanafusa, Seiichiro Higashi, and Seiichi Miyazaki. "Pre-Amorphization and Low-Temperature Implantation for Efficient Activation of Implanted As in Ge (100)." ECS Transactions 64.6 (2014): 423-429. [2-27]Chuan-Pu Chou, Chin-Yu Chen, Kuen-Yi Chen, Shih-Chieh Teng, Jia-Hong Huang, Yung-Hsien Wu, "Improved Current Drivability for Sub 20-nm N-FinFETs by Ge Pre-Amorphization in Contact with Reverse Retrograde Profile." IEEE Electron Device Letters (2017). [2-28]L. Hutin, C. Le Royer, C. Tabone, V. Delaye, F. Nemouchi, F. Aussenac, L. Clavelier, and M. Vinet, “Schottky barrier height extraction in Ohmic regime: Contacts on fully processed GeOI substrates,”J. Electrochem. Soc., vol. 156, no. 7, pp. H522–H527, Apr. 2009. DOI: 10.1149/1.3121562. [2-29]Jiewen Fan, Ming Li, Xiaoyan Xu, Yuancheng Yang, Haoran Xuan, and Ru Huang "Insight into gate-induced drain leakage in silicon nanowire transistors." IEEE Transactions on Electron Devices 62.1 (2015): 213-219. [2-30]Jaechul Park, Changjung Kim, Sunil Kim, Ihun Song, Sangwook Kim, Donghun Kang, Hyuck Lim, Huaxiang Yin, Ranju Jung, Eunha Lee, Jaecheol Lee, Kee-Won Kwon, and Youngsoo Park, “Source/Drain Series-Resistance Effects in Amorphous Gallium–Indium Zinc-Oxide Thin Film Transistors” Electron Device Letters, 2008, pp. 879-881. [2-31]Tejas Krishnamohan, Donghyun Kim, Thanh Viet Dinh, Anh-tuan Pham, Bernd Meinerzhagen, Christoph Jungemann and Krishna Saraswat, “Comparison of (001), (110) and (111) Uniaxial- and Biaxial- Strained-Ge and Strained-Si PMOS DGFETs for All Channel orientations: Mobility Enhancement, Drive Current, Delay and Off-State Leakage” IEDM Tech. Dig., 2008, pp. 1-4. [2-32]S. Mileusnic, M. Zivanov, and P. Habas. "MOS transistors characterization by split CV method." Semiconductor Conference, 2001. CAS 2001 Proceedings. International. Vol. 2. IEEE, 2001. [2-33]T. Krishnamohan, C. Jungemann, D. Kim, E. Ungersboeck, S. Selberherr, A.-T. Pham, B. Meinerzhagen, P. Wong, Y. Nishi and K. C. Saraswat, et al. "High performance, uniaxially-strained, silicon and germanium, double-gate p-MOSFETs." Microelectronic engineering 84.9 (2007): 2063-2066. [2-34]Bing-Fong Hsieh and Shu-Tong Chang. "Subband structure and effective mass of relaxed and strained Ge (110) PMOSFETs." Solid-State Electronics 60.1 (2011): 37-41. [2-35]C.-Y. Peng, Y.-C. Fu, C.-F. Huang, Y.-J. Yang, S.-T. Chang, and C.W. Liu, “Effects of Applied Mechanical Uniaxial and Biaxial Tensile Strain on the Flatband Voltage of (001), (110), and (111) Metal-Oxide-Silicon Capacitors,” IEEE Trans. on Electron Devices, Vol. 56, No. 8, pp. 1736-1745, 2009. [2-36]J. J. Wortman and R. A. Evans, “Young''s Modulus, Shear Modulus, and Poisson''s Ratio in Silicon and Germanium” J. Appl. Phys. 36, 153 (1965). [2-37]Guangyu Sun, Yongke Sun, Toshikazu Nishida, and Scott E. Thompson "Hole mobility in silicon inversion layers: Stress and surface orientation." Journal of Applied Physics 102.8 (2007): 084501-084501. [3-1]L. Wang, A. R. Brown, M. Ned jalkov, C. Alexander, B. Cheng, C. Millar, and A. Asenov "Impact of self-heating on the statistical variability in bulk and SOI FinFETs." IEEE Transactions on Electron Devices 62.7 (2015): 2106-2112. [3-2]E. Bury, B. Kaczer, P. Roussel, R. Ritzenthaler, K. Raleva, D. Vasileska, and G. Groeseneken, "Experimental validation of self-heating simulations and projections for transistors in deeply scaled nodes." Reliability Physics Symposium, 2014 IEEE International. IEEE, 2014. [3-3]E. Bury, B. Kaczer, J. Mitard, N. Collaert, N.S. Khatami, Z. Aksamija, D. Vasileska, K. Raleva , L. Witters, G. Hellings, D. Linten, G. Groeseneken, and A. Thean, "Characterization of self-heating in high-mobility Ge FinFET pMOS devices." VLSI Technology (VLSI Technology), 2015 Symposium on. IEEE, 2015. [3-4]Hai Jiang, Xiaoyan Liu, Nuo Xu, Yandong He, Gang Du, and Xing Zhang "Investigation of self-heating effect on hot carrier degradation in multiple-fin SOI FinFETs." IEEE Electron Device Letters 36.12 (2015): 1258-1260. [3-5]S. E. Liu, J. S. Wang, Y. R. Lu, D. S. Huang, C. F. Huang, W. H. Hsieh, J. H. Lee, Y. S. Tsai, J. R. Shih, Y.-H. Lee, and K. Wu, "Self-heating effect in FinFETs and its impact on devices reliability characterization." Reliability Physics Symposium, 2014 IEEE International. IEEE, 2014. [3-6]Steven Mittl, and Fernando Guarín. "Self-heating and its implications on hot carrier reliability evaluations." Reliability Physics Symposium (IRPS), 2015 IEEE International. IEEE, 2015. [3-7]A. Laurent, X. Garros, S. Barraud, G.Mariniello, G. Reimbold, D. Roy, E.Vincent, and G.Ghibaudo, "Hot carrier degradation in nanowire transistors: Physical mechanisms, width dependence and impact of Self-Heating." VLSI Technology, 2016 IEEE Symposium on. IEEE, 2016. [3-8]Frank Stern, "Calculated temperature dependence of mobility in silicon inversion layers." Physical Review Letters 44.22 (1980): 1469. [3-9]Narain D. Arora, John R. Hauser, and David J. Roulston. "Electron and hole mobilities in silicon as a function of concentration and temperature." IEEE Transactions on Electron Devices 29.2 (1982): 292-295. [3-10]Taur, Yuan, and Tak H. Ning. Fundamentals of modern VLSI devices. Cambridge university press, 2013. [3-11]Duygu Kuzum, Abhijit J. Pethe, Tejas Krishnamohan, Krishna C. Saraswat, "Ge (100) and (111) N-and P-FETs with high mobility and low-T mobility characterization." IEEE transactions on electron devices 56.4 (2009): 648-655. [3-12]Yosuke Nakakita, Ryosho Nakane, Takashi Sasada, Hiroshi Matsubara, Mitsuru Takenaka, and Shinichi Takagi, "Interface-controlled self-align source/drain Ge pMOSFETs using thermally-oxidized GeO2 interfacial layers." Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. [3-13]S. Takagi, A. Toriumi, M. Iwase, H. Tango, "On the universality of inversion layer mobility in Si MOSFET''s: Part I-effects of substrate impurity concentration." IEEE Transactions on Electron Devices 41.12 (1994): 2357-2362. [3-14]W. J. Zhu, and T. P. Ma. "Temperature dependence of channel mobility in HfO2-gated NMOSFETs." IEEE Electron Device Letters 25.2 (2004): 89-91. [3-15]B. Mereu, C. Rosse, E. P. Gusev, and M. Yang, "The role of Si orientation and temperature on the carrier mobility in metal oxide semiconductor field-effect transistors with ultrathin HfO2 gate dielectrics." Journal of applied physics 100.1 (2006): 014504. [3-16]Zhao, Yi, Mitsuru Takenaka, and Shinichi Takagi. "On surface roughness scattering-limited mobilities of electrons and holes in biaxially tensile-strained Si MOSFETs." IEEE Electron Device Letters 30.9 (2009): 987-989. [3-17]Tomonori Nishimura, Koji Kita, and Akira Toriumi. "Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface." Applied Physics Letters 91.12 (2007): 123123. [4-1]C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyun, H. Liu, R. McFadden, B. McIntyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roester, J. Sanford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, G. Weber, P. Yashar, K. Zawadzki, K. Mistry, “A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors,” Symp. on VLSI Tech., pp. 131-132, Jun. 2012. [4-2]Colinge, Jean-Pierre. "Multiple-gate soi mosfets." Solid-State Electronics 48.6 (2004): 897-905. [4-3]Li Zhang, Ryan Tu, and Hongjie Dai. "Parallel core− shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors." Nano letters 6.12 (2006): 2785-2789. [4-4]Jérémy Pretet, Stephane Monfray, Sorin Cristoloveanu, and Thomas Skotnicki "Silicon-on-nothing MOSFETs: performance, short-channel effects, and backgate coupling." IEEE Transactions on Electron Devices 51.2 (2004): 240-245. [4-5]K. Romanjek, E. Augendre, W. Van Den Daele, B. Grandchamp, L. Sanchez, C. Le Royer, J.-M. Hartmann, B. Ghyselen, E. Guiot, K. Bourdelle, S. Cristoloveanu, F. Boulanger, and L. Clavelier, "Improved GeOI substrates for pMOSFET off-state leakage control." Microelectronic Engineering 86.7 (2009): 1585-1588. [4-6]J. W. Peng, N. Singh, G. Q. Lo, D.L. Kwong, and S. J. Lee, "CMOS compatible Ge/Si core/shell nanowire gate-all-around pMOSFET integrated with HfO2/TaN gate stack." Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009. [4-7]N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D.-L. Kwong, High-performance fully depleted silicon nanowire (diameter < 5 nm) gate-all-around CMOS devices,” IEEE Electron Device Lett., vol. 27, no. 5, pp. 383–386, May 2006. [4-8]Yen Chun Fu, William Hsu, Yen-Ting Chen, Huang-Siang Lan, Cheng-Han Lee, Hung-Chih Chang, Hou-Yun Lee, Guang-Li Luo, Chao-Hsin Chien, C. W. Liu, Chenming Hu, and Fu-Liang Yang “ High mobility high on/off ratio C-V dispersion-free Ge n-MOSFETs and their strain response,” International Electron Devices Meeting (IEDM), 2010. [4-9]I-Hsieh Wong, Yen-Ting Chen, Jhih-Yang Yan, Huang-Jhih Ciou, Yu-Sheng Chen and C. W. Liu, “Fabrication and Low Temperature Characterization of Ge (110) and (100) p-MOSFETs” IEEE Transactions on Electron Devices, Vol. 61, No. 6, pp. 2215, 2014. [4-10]Heng Wu, Nathan Conrad, Wei Luo, and Peide D. Ye, "First experimental demonstration of Ge CMOS circuits." Electron Devices Meeting (IEDM), 2014 IEEE International. IEEE, 2014. [4-11]]Heng Wu, Mengwei Si, Lin Dong, Jingyun Zhang and Peide D. Ye, "Ge CMOS: Breakthroughs of nFETs (Imax= 714 mA/mm, gmax= 590 mS/mm) by recessed channel and S/D." VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on. IEEE, 2014. [4-12]Heng Wu, Wei Luo, Mengwei Si, Jingyun Zhang, Hong Zhou and Peide D. Ye, "Deep sub-100 nm Ge CMOS devices on Si with the recessed S/D and channel." Electron Devices Meeting (IEDM), 2014 IEEE International. IEEE, 2014. [4-13]Heng Wu, Wei Luo, Hong Zhou, Mengwei Si, Jingyun Zhang and Peide D. Ye, "First experimental demonstration of Ge 3D FinFET CMOS circuits." VLSI Technology (VLSI Technology), 2015 Symposium on. IEEE, 2015. [4-14]Heng Wu, Wangran Wu, Mengwei Si and Peide D. Ye, "First demonstration of Ge nanowire CMOS circuits: Lowest SS of 64 mV/dec, highest gmax of 1057 μS/μm in Ge nFETs and highest maximum voltage gain of 54 V/V in Ge CMOS inverters." Electron Devices Meeting (IEDM), 2015 IEEE International. IEEE, 2015. [4-15]Shu-Han Hsu, Chun-Lin Chu, Wen-Hsien Tu, Yen-Chun Fu, Po-Jung Sung, Hung-Chih Chang, Yen-Ting Chen, Li-Yaw Cho, Guang-Li Luo, William Hsu, C. W. Liu, Chenming Hu, and Fu-Liang Yang, Chenming Hu, and Fu-Liang Yang, “ Nearly Defect-free Ge Gate-All-Around FETs on Si Substrates,” International Electron Devices Meeting (IEDM), 2011. [4-16]S.-H. Hsu, H.-C. Chang, C.-L. Chu, Y.-T. Chen, W.-H. Tu, F. J. Hou, C. H. Lo, P.-J. Sung, B.-Y. Chen, G.-W. Huang, G.-L. Luo, C. W. Liu, C. Hu, and F.-L. Yang, “Triangular-channel Ge NFETs on Si with (111) Sidewall-Enhanced Ion and Nearly Defect-free Channels,” in Electron Devices Meeting, 2012. IEDM Technical Digest. IEEE International, 2012, pp. 525-528. [4-17]Che-Wei Chen, Cheng-Ting Chung, Ju-Yuan Tzeng, Pin-Hui Li, Pang-Sheng Chang, Chao-Hsin Chien, and Guang-Li Luo, "Germanium N and P Multifin Field-Effect Transistors With High-Performance Germanium (Ge) p+/n and n+/p Heterojunctions Formed on Si Substrate." IEEE Transactions on Electron Devices 60.4 (2013): 1334-1341.. [4-18]J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neal, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistors without junctions,” Nature Nanotechnol., vol. 5, no. 3, pp. 225–229, Mar. 2010. [4-19]R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-orabi, and K. Kuhn, “Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1170–1172, Sep. 2011. [4-20]C.-W. Lee, A. Afzalian,N.D.Akhavan, R.Yan, I. Ferain, and J.-P.Colinge, “Junctionless multigate field-effect transistor,” Appl. Phys. Lett., vol. 94, p. 053511, 2009. [4-21]D. D. Zhao, C. H. Lee, T. Nishimura, K. Nagashio, G. A. Cheng, and A. Toriumi, “Experimental and analytical characterization of dual-gated germanium junctionless p-channel metaloxide-semiconductor field-effect transistors,” Jpn. J. Appl. Phys., vol. 51, no. 4, pp. 04DA03–1–04DA03-7, Apr. 2012. [4-22]C.-W. Chen, C.-T. Chung, J.-Y. Tzeng, P.-S. Chang, G.-L. Luo, and C.-H. Chien, “Body-tied germanium tri-gate junctionless PMOSFET with in-situ boron doped channel,” IEEE Electron Device Lett., vol. 35, no. 1, pp. 12–14, Jan. 2014. [4-23]Pedram Razavi, Giorgos Fagas, Isabelle Ferain, Ran Yu, and Samaresh Das, "Electron transport in germanium junctionless nanowire transistors." Solid-State Device Research Conference (ESSDERC), 2012 Proceedings of the European. IEEE, 2012. [4-24]S.-H. Huang, F.-L. Lu, W.-L. Huang, C.-H. Huang, and C. W. Liu, “The ∼3×1020 cm−3 electron concentration and low specific contact resistivity of phosphorus-doped Ge on Si by in-situ chemical vapor deposition doping and laser annealing”, IEEE Electron Device Letter, Vol. 36, No. 11, pp. 1114-1117, 2015. [4-25]J. Kim, S. W. Bedell, and D. K. Sadana, “Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,”Appl. Phys. Lett., vol. 98, no. 8, p. 082112, Feb. 2011. DOI: 10.1063/1.3558715 [4-26]Chun-Ti Lu, Fang-Liang Lu, Chung-En Tsai, Wen-Hung Huang, and C. W. Liu, “Process simulation of pulsed laser annealing on epitaxial Ge on Si,” ECS J. Solid State Sci. Tech. 2017. [4-27]Shu-Han Hsu, Chun-Lin Chu, and Guang-Li Luo. "Selective dry-etching process for fabricating Ge gate-all-around field-effect transistors on Si substrates." Thin Solid Films 540 (2013): 183-189. [4-28]I-Hsieh Wong, Yen-Ting Chen, Shih-Hsien Huang, Wen-Hsien Tu, Yu-Sheng Chen and C. W. Liu, “Junctionless Gate-all-around PFETs using in-situ Boron Doped Ge channel on Si”, IEEE Transaction on Nanotechnology, Vol. 14, No. 5, pp. 878-882, 2015. [4-29]Rui Zhang, Takashi Iwasaki, Noriyuki Taoka, Mitsuru Takenaka, and Shinichi Takagi, "High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation" IEEE Transactions on Electron Devices 59.2 (2012): 335-341. [4-30]Cheng-Ming Lin, Hung-Chih Chang, Yen-Ting Chen, I-Hsieh Wong, Huang-Siang Lan, Shih-Jan Luo, Jing-Yi Lin, Yi-Jen Tseng, C. W. Liu, Chenming Hu, and Fu-Liang Yang, “Interfacial layer-free ZrO2 on Ge with 0.39-nm EOT, κ~43, ~2×10-3 A/cm2 gate leakage, SS =85 mV/dec, Ion/Ioff =6×105, and high strain response,” p.509-512, International Electron Devices Meeting (IEDM), 2012. [4-31]V. I. Fistul, A. G. Yakovenko, A. A. Gvelesiani, V. N. Tsygankov and R. L. Korchazhkina, "LOESLICHKEIT UND AUSSCHEIDUNG VON ELEKTRISCH AKTIVEM PHOSPHOR IN GERMANIUM." Chemischer Informationsdienst 6.25 (1975). [4-32]Cheng-Ting Chung, Che-Wei Chen, Jyun-Chih Lin, Che-Chen Wu, Chao-Hsin Chien, Guang-Li Luo, Chi-Chung Kei, and Chien-Nan Hsiao, "Epitaxial Germanium on SOI Substrate and Its Application of Fabricating High ION/IOFF Ratio Ge FinFETs." IEEE Transactions on Electron Devices 60.6 (2013): 1878-1883. [4-33]Chi-Woo Lee, Adrien Borne, Isabelle Ferain, Aryan Afzalian, Ran Yan, Nima Dehdashti Akhavan, Pedram Razavi, and Jean-Pierre Colinge, "High-temperature performance of silicon junctionless MOSFETs." IEEE transactions on electron devices 57.3 (2010): 620-625. [4-34]Antoine Cros, Krunoslav Romanjek, Dominique Fleury, Samuel Harrison, Robin Cerutti, Philippe Coronel, Benjamin Dumont, Arnaud Pouydebasque, Romain Wacquez, Blandine Duriez, Romain Gwoziecki, Frederic Boeuf, Hugues Brut, Gérard Ghibaudo, Thomas Skotnicki "Unexpected mobility degradation for very short devices: A new challenge for CMOS scaling." Electron Devices Meeting, 2006. IEDM''06. International. IEEE, 2006. [5-1]A. V.-Y. Thean, D. Yakimets, T. H. Bao, P. Schuddinck, S. Sakhare, M. G. Bardon, A. Sibaja- Hernandez, I. Ciofi, G. Eneman, A. Veloso, J. Ryckaert, P. Raghavan, A. Mercha, A. Mocuta, Z. Tokei, D. Verkest, P. Wambacq, K. De Meyer, and N. Collaert, “Vertical device architecture for 5 nm and beyond: Device & circuit implications,” in Symp. VLSI Technol. Dig. Tech. Papers, Jun. 2015, pp. T26–T27. DOI: 10.1109/VLSIT.2015.7223689 [5-2]Tomonori Nishimura, Koji Kita, and Akira Toriumi. "Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface." Applied Physics Letters 91.12 (2007): 123123. [5-3]Reza Arghavani, Pan Yang, Kaihan Ashtiani, Harmeet Singh and Dave Hemker, "Low Resistance Contacts to Enable 5 nm Node Technology: Patterning, Etch, Clean, Metallization and Device Performance", IEEE International Electron Device Meeting, short course, 2016. [5-4]S.-H. Huang, F.-L. Lu, W.-L. Huang, C.-H. Huang, and C. W. Liu, “The ∼3×1020 cm−3 electron concentration and low specific contact resistivity of phosphorus-doped Ge on Si by in-situ chemical vapor deposition doping and laser annealing”, IEEE Electron Device Letter, Vol. 36, No. 11, pp. 1114-1117, 2015. [5-5]I-Hsieh Wong, Yen-Ting Chen, Shih-Hsien Huang, Wen-Hsien Tu, Yu-Sheng Chen and C. W. Liu, “Junctionless Gate-all-around PFETs using in-situ Boron Doped Ge channel on Si”, IEEE Transaction on Nanotechnology, Vol. 14, No. 5, pp. 878-882, 2015. [5-6]X. Jin, X. Liu, H.-I. Kwon, J.-H. Lee, and J.-H. Lee, “A subthreshold current model for nanoscale short channel junctionless MOSFETs applicable to symmetric and asymmetric double-gate structure,” Solid-State Electron., vol. 82, pp. 77–81, 2013. [5-7]F. Jazaeri, L. Barbut, A. Koukab, and J.-M. Sallese, “Analytical model for ultra-thin body junctionless symmetric double gate MOSFETs in subthreshold regime,” Solid-State Electron., vol. 82, pp. 103–110, 2013. [5-8]V. I. Fistul, A. G. Yakovenko, A. A. Gvelesiani, V. N. Tsygankov and R. L. Korchazhkina, "LOESLICHKEIT UND AUSSCHEIDUNG VON ELEKTRISCH AKTIVEM PHOSPHOR IN GERMANIUM." Chemischer Informationsdienst 6.25 (1975). [5-9]Hidenori Miyoshi, Tetsuji Ueno, Koji Akiyam, Yoshihiro Hirota, and Takanobu Kaitsuka, "In-situ contact formation for ultra-low contact resistance NiGe using carrier activation enhancement (CAE) techniques for Ge CMOS." VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on. IEEE, 2014. [5-10]Shu-Han Hsu, Chun-Lin Chu, and Guang-Li Luo. "Selective dry-etching process for fabricating Ge gate-all-around field-effect transistors on Si substrates." Thin Solid Films 540 (2013): 183-189. [5-11]Chi-Woo Lee, Adrien Borne, Isabelle Ferain, Aryan Afzalian, Ran Yan, Nima Dehdashti Akhavan, Pedram Razavi, and Jean-Pierre Colinge, "High-temperature performance of silicon junctionless MOSFETs." IEEE transactions on electron devices 57.3 (2010): 620-625. [5-12]Hung-Yu Ye, Huang-Siang Lan, and C. W. Liu, “Electron Mobility in Junctionless Ge Nanowire NFETs,” IEEE Transactions on Electron Devices, Vol. 63, No.11, pp. 4191, 2016. [6-1]J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100),” Phys. Rev. B, vol. 70, no. 15, p. 155309, Oct. 2004. [6-2]Toshifumi Irisawa, Toshinori Numata, Tsutomu Tezuka, Koji Usuda, Norio Hirashita, Naoharu Sugiyama, Eiji Toyoda, and Shin-Ichi Takagi "High-performance uniaxially strained SiGe-on-insulator pMOSFETs fabricated by lateral-strain-relaxation technique." IEEE Transactions on Electron Devices 53.11 (2006): 2809-2815. [6-3]M. J. Suess, R.Geiger, R.A.Minamisawa, G. Schiefler, J.Frigerio, D. Chrastina, G. Isella, R. Spolenak, J.Faist, and H. Sigg, "Analysis of enhanced light emission from highly strained germanium microbridges." Nature Photonics 7.6 (2013): 466-472. [6-4]L. Wang, A. R. Brown, M. Ned jalkov, C. Alexander, B. Cheng, C. Millar, and A. Asenov "Impact of self-heating on the statistical variability in bulk and SOI FinFETs." IEEE Transactions on Electron Devices 62.7 (2015): 2106-2112. [6-5]E. Bury, B. Kaczer, P. Roussel, R. Ritzenthaler, K. Raleva, D. Vasileska, and G. Groeseneken, "Experimental validation of self-heating simulations and projections for transistors in deeply scaled nodes." Reliability Physics Symposium, 2014 IEEE International. IEEE, 2014. [6-6]E. Bury, B. Kaczer, J. Mitard, N. Collaert, N.S. Khatami, Z. Aksamija, D. Vasileska, K. Raleva , L. Witters, G. Hellings, D. Linten, G. Groeseneken, and A. Thean, "Characterization of self-heating in high-mobility Ge FinFET pMOS devices." VLSI Technology (VLSI Technology), 2015 Symposium on. IEEE, 2015. [6-7]Reza Arghavani, Pan Yang, Kaihan Ashtiani, Harmeet Singh and Dave Hemker, "Low Resistance Contacts to Enable 5 nm Node Technology: Patterning, Etch, Clean, Metallization and Device Performance", IEEE International Electron Device Meeting, short course, 2016 [6-8]Jhih-Yang Yan, Sun-Rong Jan, Yu-Jiun Peng, H. H. Lin, W. K. Wan, Y.-H. Huang, Bigchoug Hung, K.-T. Chan, Michael Huang, M.-T. Yang, and C. W. Liu, “Thermal Resistance Modeling of Back-end Interconnect and Intrinsic FinFETs, and Transient Simulation of Inverters with Capacitive Loading Effects,” p.898-901, International Electron Devices Meeting (IEDM), 2016. [6-9]Jae Woo Lee, Wan Soo Yun, and Gérard Ghibaudo. "Impact of trap localization on low-frequency noise in nanoscale device." Journal of Applied Physics 115.19 (2014) [6-10]Rodrigo Trevisoli Doria, Renan Trevisoli, Michelly de Souza, and Marcelo Antonio Pavanello, "Low-frequency noise and effective trap density of short channel p-and n-types junctionless nanowire transistors." Solid-State Electronics 96 (2014): 22-26. [6-11]A. Veloso, B. Parvais, P. Matagne, E. Simoen, T. Huynh-Bao, V. Paraschiv, E. Vecchio, K. Devriendt, E. Rosseel, M. Ercken, B. T. Chan, C. Delvaux, E. Altamirano-Sánchez, J. J. Versluijs, Z. Tao, S. Suhard, S. Brus, A. Sibaja-Hernandez, N. Waldron, P. Lagrain, O. Richard, H. Bender, A. Chasin, B. Kaczer, T. Ivanov, S. Ramesh, K. De Meyer, J. Ryckaert, N. Collaert, and A. Thean, "Junctionless gate-all-around lateral and vertical nanowire FETs with simplified processing for advanced logic and analog/RF applications and scaled SRAM cells." VLSI Technology, 2016 IEEE Symposium on. IEEE, 2016. [6-12]Chun-Ti Lu, Fang-Liang Lu, Chung-En Tsai, Wen-Hung Huang, and C. W. Liu, “Process simulation of pulsed laser annealing on epitaxial Ge on Si,” ECS J. Solid State Sci. Tech. 2017. [6-13]C.-Y. Peng, Y.-C. Fu, C.-F. Huang, Y.-J. Yang, S.-T. Chang, and C.W. Liu, “Effects of Applied Mechanical Uniaxial and Biaxial Tensile Strain on the Flatband Voltage of (001), (110), and (111) Metal-Oxide-Silicon Capacitors,” IEEE Trans. on Electron Devices, Vol. 56, No. 8, pp. 1736-1745, 2009. [6-14]Hai Jiang, Xiaoyan Liu, Nuo Xu, Yandong He, Gang Du, and Xing Zhang "Investigation of self-heating effect on hot carrier degradation in multiple-fin SOI FinFETs." IEEE Electron Device Letters 36.12 (2015): 1258-1260. [6-15]S. E. Liu, J. S. Wang, Y. R. Lu, D. S. Huang, C. F. Huang, W. H. Hsieh, J. H. Lee, Y. S. Tsai, J. R. Shih, Y.-H. Lee, and K. Wu, "Self-heating effect in FinFETs and its impact on devices reliability characterization." Reliability Physics Symposium, 2014 IEEE International. IEEE, 2014. [6-16]Ran Cheng, Xiao Yu, Lei Shen, Longxiang Yin, Yanyan Zhang, Zejie Zheng, Bing Chen, Xiaoyan Liu, and Yi Zhao, "Ultrafast pulse characterization of hot carrier injection effects on ballistic carrier transport for sub-100 nm MOSFETs." Reliability Physics Symposium (IRPS), 2017 IEEE International. IEEE, 2017. [6-17]D. D. Zhao, C. H. Lee, T. Nishimura, K. Nagashio, G. A. Cheng, and A. Toriumi, “Experimental and analytical characterization of dual-gated germanium junctionless p-channel metaloxide-semiconductor field-effect transistors,” Jpn. J. Appl. Phys., vol. 51, no. 4, pp. 04DA03–1–04DA03-7, Apr. 2012. [6-18]R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-orabi, and K. Kuhn, “Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1170–1172, Sep. 2011. [6-19]Hung-Yu Ye, Huang-Siang Lan, and C. W. Liu, “Electron Mobility in Junctionless Ge Nanowire NFETs,” IEEE Transactions on Electron Devices, Vol. 63, No.11, pp. 4191, 2016.
|