|
[1]W. Brattain, J. Bardeen, and W. Shockley, Bell Labs logbook pp. 7-8, 1947. [2]G. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp. 114-118, 1965. [3]G. Moore, “Progress In Digital Integrated Electronics,” in International Electron Devices Meeting, 1975, pp. 11-13. [4]D. K. Schroder, Semiconductor Material and Device Characterization: Wiley, 2005. [5]M.-K. L. Simon M. Sze, Semiconductor Devices: Physics and Technology, 3rd ed.: Wiley, 2013. [6]D. A. Neamen, An Introduction to Semiconductor Devices: McGraw-Hill Science Engineering, 2005. [7]X. Huang, L. Chang, K. Asano et al., “Sub-50 nm P-Channel FinFET,” IEEE transactions on electron devices, vol. 48, no. 5, pp. 880-886, 2001. [8]B. Kumar, B. K. Kaushik, and Y. S. Negi, “Organic Thin Film Transistors: Structures, Models, Materials, Fabrication, and Applications: A Review,” Polymer Reviews, vol. 54, no. 1, pp. 33-111, 2014. [9]E. Virey, Organic Thin Film Transistor 2016: Flexible Displays and Other Applications 2016 Report by Yole Developpement, Yole Developpement, Yole Developpement, 2016. [10]D. K. G. Mr Raghu Das, Dr Guillaume Chansin and Dr Xiaoxi He. "Printed, Organic & Flexible Electronics Forecasts, Players & Opportunities 2017-2027," 6th may, 2017. [11]A. N. Flora Li, Yiliang Wu, Beng S. Ong, Organic Thin Film Transistor Integration: A Hybrid Approach: Wiley, 2011. [12]W. S. Wong, Salleo, Alberto, Flexible Electronics: springer, 2009. [13]A. Hart-Davis, Science : The Definitive Visual Guide: Dk Pub, 2015. [14]J. Zhou, X. Wan, Y. Liu et al., “Small molecules based on benzo[1,2-b:4,5-b'']dithiophene unit for high-performance solution-processed organic solar cells,” J Am Chem Soc, vol. 134, no. 39, pp. 16345-51, Oct 03, 2012. [15]H. Klauk, Organic Electronics: Materials, Manufacturing, and Applications: Wiley, 2006. [16]H. Klauk, “Organic thin-film transistors,” Chem Soc Rev, vol. 39, no. 7, pp. 2643-66, Jul, 2010. [17]L. Duan, L. Hou, T.-W. Lee et al., “Solution processable small molecules for organic light-emitting diodes,” Journal of Materials Chemistry, vol. 20, no. 31, pp. 6392, 2010. [18]T. Zaki, Short-Channel Organic Thin-Film Transistors: Springer, 2015. [19]S. B. J. H. Schön, Ch. Kloc, B. Batlogg, “Ambipolar Pentacene Field-Effect Transistors and Inverters,” Science, vol. 287, no. 5455, pp. 1022-1023, 2000. [20]M. Halik, H. Klauk, U. Zschieschang et al., “Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors,” Advanced Materials, vol. 15, no. 11, pp. 917-922, 2003. [21]W. C. Donald Lupo , Sven Breitung, Klaus Hecker, OE-A Roadmap for Organic and Printed Electronics: spriner, 2012. [22]S. P. Tiwari, E. B. Namdas, V. Ramgopal Rao et al., “Solution-Processed n-Type Organic Field-Effect Transistors With High on/off Current Ratios Based on Fullerene Derivatives,” IEEE Electron Device Letters, vol. 28, no. 10, pp. 880-883, 2007. [23]B. K. Brajesh Kumar Kaushik, Sanjay Prajapati, Poornima Mittal, Organic Thin-Film Transistor Applications: Materials to Circuits: CRC Press, 2016. [24]K. Lau, Y. Liu, H. Chen et al., “Effect of Annealing Temperature on the Morphology and Piezoresponse Characterisation of Poly(vinylidene fluoride-trifluoroethylene) Films via Scanning Probe Microscopy,” Advances in Condensed Matter Physics, vol. 2013, pp. 1-5, 2013. [25]H. Purnawali, W. W. Xu, Y. Zhao et al., “Poly(methyl methacrylate) for active disassembly,” Smart Materials and Structures, vol. 21, no. 7, pp. 075006, 2012. [26]汪建民, 材料分析, 2014. [27]"Bragg''s Law," 7th May, 2017. [28]B. E. Warren, X-ray diffraction: Addison-Wesley, 1969. [29]M. A. Farrukh, Advanced Aspects of Spectroscopy: InTech, 2012. [30]Z. CHEN, "The Crystallization of Poly(ethylene terephthalate) Studied by Thermal Analysis and FTIR Spectroscopy," 2012. [31]薛孝亭, 利用奈米間隙之共平面電極探討表面電位與電雙層電容之關聯並作為生物感測器之應用: 國立臺灣大學生醫電子與資訊學研究所, 2016. [32]N. Wu, Q. Zhang, C. Zhu et al., “Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge substrate,” Applied Physics Letters, vol. 84, no. 19, pp. 3741-3743, 2004. [33]B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Transactions on Electron Devices, vol. 27, no. 3, pp. 606 - 608, 1980. [34]B. Miao, J. J. Liu, X. Z. et al., “Ferroelectric relaxation dependence of poly(vinylidene fluoride-co-trifluoroethylene) on frequency and temperature after grafting with poly(methyl methacrylate),” RSC Adv., vol. 6, no. 87, pp. 84426-84438, 2016. [35]H. Li, K. Tan, Z. Hao et al., “Preparation and crystallization behavior of poly(vinylidene fluoride-ter-chlorotrifluoroethylene- ter-trifluoroethylene),” Journal of Applied Polymer Science, vol. 122, no. 5, pp. 3007-3015, 2011. [36]S. Murakami, K. Satoh, M. Uno et al., “Preparation of poly(vinylidene difluoride/trifluoroethylene/chlorotrifluoroethylene) terpolymer thin films for dielectric bolometer mode infrared sensors,” physica status solidi (c), vol. 9, no. 12, pp. 2641-2643, 2012. [37]J. D. Plummer, M. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, 2000. [38]K. S. Tan, W. C. Gan, T. S. Velayutham et al., “Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles,” Smart Materials and Structures, vol. 23, no. 12, pp. 125006, 2014. [39]H. H. Gong, B. Miao, X. Zhang et al., “High-field antiferroelectric-like behavior in uniaxially stretched poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)-grafted-poly(methyl methacrylate) films with high energy density,” RSC Adv., vol. 6, no. 2, pp. 1589-1599, 2016. [40]R. I. Mahdi, W. C. Gan, and W. H. Abd. Majid, “Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators,” Sensors (Basel), vol. 14, no. 10, pp. 19115-27, Oct 14, 2014. [41]李育德, 高分子導論: 國興出版社, 1985. [42]A. Kahouli, “Effect of film thickness on structural, morphology, dielectric and electrical properties of parylene C films,” Journal of Applied Physics, vol. 112, no. 6, pp. 064103, 2012. [43]B. L. Liu, B. B. Tian, J. L. Sun et al., “Confinement effect on coercive field in relaxor terpolymer nanowires,” Applied Surface Science, vol. 355, pp. 473-476, 2015. [44]S. Oh, Y. Kim, Y. Y. Choi et al., “Fabrication of vertically well-aligned P(VDF-TrFE) nanorod arrays,” Adv Mater, vol. 24, no. 42, pp. 5708-12, Nov 08, 2012. [45]F. Wen, Z. Xu, W. Xia et al., “High dielectric permittivity and low dielectric loss nanocomposites based on poly(VDF–TrFE–CTFE) and graphene nanosheets,” Journal of Advanced Dielectrics, vol. 03, no. 02, pp. 1350010, 2013. [46]J. C. Yingying Lu, Bret Neese, Qiming Zhang,and Qing Wang, “A Modular Approach to Ferroelectric Polymers with Chemically Tunable Curie Temperatures and Dielectric Constants,” J. Am. Chem. Soc., vol. 128, no. 25, pp. 8120-8121, 2006. [47]W. M. Xia, Y. J. Gu, C. Y. You et al., “A crystal phase transition and its effect on the dielectric properties of a hydrogenated P(VDF-co-TrFE) with low TrFE molar content,” RSC Adv., vol. 5, no. 130, pp. 107557-107565, 2015. [48]X. J. Meng, J. L. Wang, H. S. Xu et al., “The effect of ac field amplitude on the relaxor behaviors in Langmuir–Blodgett terpolymer films,” Journal of Applied Physics, vol. 106, pp. 114106, 2009. [49]Y. H. Chen, Y. D. Xia, H. D. Sun et al., “Solution-Processed Highly Efficient Alternating Current-Driven Field-Induced Polymer Electroluminescent Devices Employing High-kRelaxor Ferroelectric Polymer Dielectric,” Advanced Functional Materials, vol. 24, no. 11, pp. 1501-1508, 2014. [50]P. Martins, A. C. Lopes, and S. Lanceros-Mendez, “Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications,” Progress in Polymer Science, vol. 39, no. 4, pp. 683-706, 2014. [51]J. Li, S. Tan, S. Ding et al., “High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application,” Journal of Materials Chemistry, vol. 22, no. 44, pp. 23468, 2012. [52]J. J. Li, H. H. Gong, Q. Yang et al., “Linear-like dielectric behavior and low energy loss achieved in poly(ethyl methacrylate) modified poly(vinylidene-co-trifluoroethylene),” Applied Physics Letters, vol. 104, no. 26, pp. 263901, 2014. [53]M. V. Alonso, M. L. Auad, U. Sorathia et al., “Barrier properties for short-fiber-reinforced epoxy foams,” Journal of Applied Polymer Science, vol. 102, no. 4, pp. 3266-3272, 2006. [54]X. Z. Chen, X. Chen, X. Guo et al., “Ordered arrays of a defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption,” Nanoscale, vol. 6, no. 22, pp. 13945-51, Nov 21, 2014. [55]C. S. Ferreira, P. L. Santos, J. A. Bonacin et al., “Rice Husk Reuse in the Preparation of SnO2/SiO2Nanocomposite,” Materials Research, vol. 18, no. 3, pp. 639-643, 2015. [56]S. MusićI, N. Filipović-Vinceković, and a. L. Sekovanić, “Precipitation of amorphous SiO2 particles and their properties,” Brazilian Journal of Chemical Engineering, vol. 28, no. 1, pp. 89-94, 2011. [57]H. Khan, D. Mamaluy, and D. Vasileska, “Influence of interface roughness on quantum transport in nanoscale FinFET,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 25, no. 4, pp. 1437, 2007. [58]E. D. B. Lieyi Sheng, and Dominique Wojciechowski, “Surface Roughness Enhanced Current in Defectively Stressing Poly-Oxide-Poly Capacitors,” in IEEE International Integrated Reliability Workshop, 2006. [59]X. Sun, C. A. Di, and Y. Liu, “Engineering of the dielectric–semiconductor interface in organic field-effect transistors,” Journal of Materials Chemistry, vol. 20, no. 13, pp. 2599, 2010. [60]J. H. Kwon, X. Zhang, S. H. Piao et al., “Stability Study of Flexible 6,13-Bis(triisopropylsilylethynyl)pentacene Thin-Film Transistors with a Cross-Linked Poly(4-vinylphenol)/Yttrium Oxide Nanocomposite Gate Insulator,” Polymers, vol. 8, no. 3, pp. 88, 2016. [61]D. Braga, and G. Horowitz, “High-Performance Organic Field-Effect Transistors,” Advanced Materials, vol. 21, no. 14-15, pp. 1473-1486, 2009. [62]S. S. Chang, A. B. Rodríguez, A. M. Higgins et al., “Control of roughness at interfaces and the impact on charge mobility in all-polymer field-effect transistors,” Soft Matter, vol. 4, no. 11, pp. 2220, 2008. [63]Y. Don Park, J. A. Lim, H. S. Lee et al., “Interface engineering in organic transistors,” Materials Today, vol. 10, no. 3, pp. 46-54, 2007. [64]F. Y. Yang, K. J. Chang, M. Y. Hsua et al., “High-performance poly(3-hexylthiophene) transistors with thermally cured and photo-cured PVP gate dielectrics,” Journal of Materials Chemistry, vol. 18, pp. 5927-5932, 2008. [65]W.-H. Lee, C. C. Wang, and J. C. Ho, “Improved performance of pentacene field-effect transistors using a nanocomposite gate dielectric,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 27, no. 2, pp. 601, 2009. [66]M. Mottaghi, and G. Horowitz, “Field-induced mobility degradation in pentacene thin-film transistors,” Organic Electronics, vol. 7, no. 6, pp. 528-536, 2006. [67]J. Park, S. Y. Park, S.-O. Shim et al., “A polymer gate dielectric for high-mobility polymer thin-film transistors and solvent effects,” Applied Physics Letters, vol. 85, no. 15, pp. 3283-3285, 2004. [68]S. Steudel, S. De Vusser, S. De Jonge et al., “Influence of the dielectric roughness on the performance of pentacene transistors,” Applied Physics Letters, vol. 85, no. 19, pp. 4400, 2004. [69]L. L. Chua, P. K. H. Ho, H. Sirringhaus et al., “Observation of Field-Effect Transistor Behavior at Self-Organized Interfaces,” Advanced Materials, vol. 16, no. 18, pp. 1609-1615, 2004. [70]M. L. Chabinyc, R. Lujan, F. Endicott et al., “Effects of the surface roughness of plastic-compatible inorganic dielectrics on polymeric thin film transistors,” Applied Physics Letters, vol. 90, no. 23, pp. 233508, 2007. [71]Y. Xia, J. H. Cho, J. Lee et al., “Comparison of the Mobility-Carrier Density Relation in Polymer and Single-Crystal Organic Transistors Employing Vacuum and Liquid Gate Dielectrics,” Advanced Materials, vol. 21, no. 21, pp. 2174-2179, 2009. [72]J. L. Z. Bao, Organic Field-Effect Transistors: CRC Press, 2007. [73]G. H. Haertling, “Ferroelectric Ceramics: History and Technology,” J. Am. Ceram. Soc, vol. 82, no. 4, pp. 797-818, 1999. [74]G. S. Franco Jona, Ferroelectric Crystals, New York: Pergamon, 1993. [75]M. Stewart, Cain, M G, Hall, D A, Ferroelectric hysteresis measurement and analysis: NPL Reports, 1999. [76]O. R. Luca, J. L. Gustafson, S. M. Maddox et al., “Catalysis by electrons and holes: formal potential scales and preparative organic electrochemistry,” Org. Chem. Front., vol. 2, no. 7, pp. 823-848, 2015. [77]H.-J. Yen, and G.-S. Liou, “Enhanced near-infrared electrochromism in triphenylamine-based aramids bearing phenothiazine redox centers,” Journal of Materials Chemistry, vol. 20, no. 44, pp. 9886, 2010. [78]S.-H. Hsiao, Y.-H. Hsiao, and Y.-R. Kung, “Highly redox-stable and electrochromic aramids with morpholinyl-substituted triphenylamine units,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 54, no. 9, pp. 1289-1298, 2016. [79]J. D. Casperson, L. D. Bell, and H. A. Atwater, “Materials issues for layered tunnel barrier structures,” Journal of Applied Physics, vol. 92, no. 1, pp. 261-267, 2002. [80]K. K. Likharev, “Layered tunnel barriers for nonvolatile memory devices,” Applied Physics Letters, vol. 73, no. 15, pp. 2137-2139, 1998. [81]L. Yueran, S. Dey, T. Shan et al., “Improved performance of SiGe nanocrystal memory with VARIOT tunnel barrier,” IEEE Transactions on Electron Devices, vol. 53, no. 10, pp. 2598-2602, 2006. [82]D. B. A. R. Blythe, Electrical Properties of Polymers, U.K.: Cambridge University Press, 2005. [83]S. Jung, C.-H. Kim, Y. Bonnassieux et al., “Injection barrier at metal/organic semiconductor junctions with a Gaussian density-of-states,” Journal of Physics D: Applied Physics, vol. 48, no. 39, pp. 395103, 2015. [84]S. Kar, Physics and Technology of High-k Gate Dielectrics: ECS transactions, 2007. [85]H. Kim, P. C. McIntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Applied Physics Letters, vol. 82, no. 1, pp. 106-108, 2003. [86]D. A. Neumayer, and E. Cartier, “Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition,” Journal of Applied Physics, vol. 90, no. 4, pp. 1801-1808, 2001. [87]E. C. T. Haccart, D. Remiens, “Dielectric, ferroelectric and piezoelectric properties of sputtered PZT thin films on Si substrates: influence of film thickness and orientation,” Semiconductor Physics, Quantum Electronics & Optoelectronics, vol. 5, no. 1, pp. 78-88, 2002. [88]Q. M. Zhang, H. Xu, F. Fang et al., “Critical thickness of crystallization and discontinuous change in ferroelectric behavior with thickness in ferroelectric polymer thin films,” Journal of Applied Physics, vol. 89, no. 5, pp. 2613-2616, 2001. [89]K. H. K. a. D. B. Farme, “Atomic layer deposition of gadolinium scandate films with high dielectric constant and low leakage current,” Applied Physics Letters, vol. 89, no. 13, pp. 133512, 2006. [90]B. H. Lee, L. Kang, W.-J. Qi et al., “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” in Electron Devices Meeting, 1999. [91]L. Pintilie, I. Vrejoiu, D. Hesse et al., “Extrinsic contributions to the apparent thickness dependence of the dielectric constant in epitaxialPb(Zr,Ti)O3thin films,” Physical Review B, vol. 75, no. 22, 2007. [92]H. Xu, J. Zhong, X. Liu et al., “Ferroelectric and switching behavior of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface,” Applied Physics Letters, vol. 90, no. 9, pp. 092903, 2007. [93]S. L. Li, K. Tsukagoshi, E. Orgiu et al., “Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors,” Chem Soc Rev, vol. 45, no. 1, pp. 118-51, Jan 07, 2016. [94]F. Xia, H. Xu, F. Fang et al., “Thickness dependence of ferroelectric polarization switching in poly(vinylidene fluoride–trifluoroethylene) spin cast films,” Applied Physics Letters, vol. 78, no. 8, pp. 1122-1124, 2001. [95]H. Xu, “Dielectric properties and ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene) 50/50 copolymer ultrathin films,” Journal of Applied Polymer Science, vol. 80, no. 12, pp. 2259-2266, 2001. [96]Haisheng Xu, Suolong Ni, and C. Yang, “High polarization levels in poly(vinylidene fluoride–trifluoroethylene) ferroelectric thin films doped with diethyl phthalate,” Journal of Applied Polymer Science, vol. 8, no. 6, pp. 1416-1419, 2003. [97]Y. Lu, J. Claude, B. Neese et al., “A Modular Approach to Ferroelectric Polymers with Chemically Tunable Curie Temperatures and Dielectric Constants,” J. Am. Chem. Soc., vol. 128, no. 25, pp. 8120-8121, 2006. [98]C. Miramond, and D. Vuillaume, “1-octadecene monolayers on Si(111) hydrogen-terminated surfaces: Effect of substrate doping,” Journal of Applied Physics, vol. 96, no. 3, pp. 1529-1536, 2004. [99]R. Kappera, D. Voiry, S. E. Yalcin et al., “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat Mater, vol. 13, no. 12, pp. 1128-34, Dec, 2014. [100]J. M. Larson, and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1048-1058, 2006. [101]A. V. Penumatcha, R. B. Salazar, and J. Appenzeller, “Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model,” Nat Commun, vol. 6, pp. 8948, Nov 13, 2015. [102]F. J. G. a. S. A. Ortiz-Conde , J.J. Liou, A. Cerdeira, , M. Estrada, Y. Yued “A review of recent MOSFET threshold voltage extraction methods,” Microelectronics Reliability, vol. 42, no. 4-5, pp. 583-596, 2002. [103]N. H. Van, J.-H. Lee, D. Whang et al., “Low-Programmable-Voltage Nonvolatile Memory Devices Based on Omega-shaped Gate Organic Ferroelectric P(VDF-TrFE) Field Effect Transistors Using p-type Silicon Nanowire Channels,” Nano-Micro Letters, vol. 7, no. 1, pp. 35-41, 2014. [104]L. Xiang, W. Wang, and W. Xie, “Achieving high mobility, low-voltage operating organic field-effect transistor nonvolatile memory by an ultraviolet-ozone treating ferroelectric terpolymer,” Sci Rep, vol. 6, pp. 36291, Nov 08, 2016. [105]H. Yan, Z. Chen, Y. Zheng et al., “A high-mobility electron-transporting polymer for printed transistors,” Nature, vol. 457, no. 7230, pp. 679-86, Feb 05, 2009.
|