跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏翰
研究生(外文):Po-Han Chen
論文名稱:有機高介電材料P(VDF-TrFE-CTFE)異質接面性質之探討與元件研發
論文名稱(外文):The development of heterogeneous-interfacial properties and device characteristics in P(VDF-TrFE-CTFE) based electronics
指導教授:林致廷林致廷引用關係
指導教授(外文):Chih-Ting Lin
口試日期:2017-06-15
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:108
中文關鍵詞:高介電質P(VDF-TrFE-CTFE)有機電晶體介電常數穩定度
外文關鍵詞:P(VDF-TrFE-CTFE)dielectrichigh-kOTFTs
相關次數:
  • 被引用被引用:1
  • 點閱點閱:815
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機薄膜電晶體研究中,有機半導體材料及有機導電分子已被廣泛的研究,相較於前述,有機介電質材料則較少有學者進行仔細地探討。而在一個完整的薄膜電晶體上,好的介電質材料不但提供更好的電氣特性,在另一方面,因為有機半導體與導電高分子材料對於環境因子皆非常敏感,良好的有機介電質材料亦可有效地保護軟性電子材料。所以,有機介電質材料將會是未來軟性電子實際應用時所需進行的重要發展方向。有鑒於此,本論文針對一新穎之有機高介電材料聚偏氟乙烯-三氟乙烯-三氟氯乙烯(Poly(vinylidene fluoride- trifluoroethylene-chlorotrifluoroethylene), P(VDF-TrFE-CTFE))作為有機電晶體之絕緣層及保護層之可能進行探討。
首先針對P(VDF-TrFE-CTFE)本身之材料特性進行分析,利用熱分析及X-射線繞射分析建構P(VDF-TrFE-CTFE)薄膜之製程條件,並利用循環伏安法架構材料能帶圖,材料之最高佔有軌域(highest occupied molecular orbital, HOMO)及低空軌域(lowest unoccupied molecular orbital, LUMO)分別於真空能階下方7.393 eV及2.565 eV處,能隙約4.83 eV。
實驗中也驗證了此材料擁有高介電常數(r > 45 @ 1 kHz)、高介電質強度(EBD > 4.25 MV/cm)及高的儲存環境穩定性( > 1000 小時)。利用P(VDF-TrFE-CTFE)作為有機電晶體之絕緣層,也使得電晶體擁有較佳的開/關比(on/off ratio > 5 order)、較低的臨限電壓(Vth = -1.5 V)、較好的次臨限斜率(SS = 0.997 V/dec)、較小的遲滯曲線(4.8 V)及降地操作偏壓,並可提升元件的環境穩定性。
此外針對介電常數與厚度之相依性現象,本論文也提出推論並驗證,研究結果指出由於靠近矽基板處之P(VDF-TrFE-CTFE)電偶極排列會受到介面陷阱電性的影響,導致P(VDF-TrFE-CTFE)/矽介面處生成低介電常數介面層,進而影響介電質之電容值或介電常數。
Organic electronics have been developed for decades. Both organic semiconductors and organic conductors are intensively investigated. However, there are few pieces in the organic dielectric, which is also important in organic transistors. Since dielectrics not only function as protective layers in organic electronics but also determine essential characteristics of organic thin field transistors (OTFTs), it is important to explore different organic dielectrics and identify a good one for future applications of organic electronics. To address this point of view, in this dissertation, we aim to investigate a newly developed organic dielectric, Poly(vinylidene fluoride- trifluoroethylene-chlorotrifluoroethylene) terpolymer, or called P(VDF-TrFE-CTFE). P(VDF-TrFE-CTFE) has a high dielectric constant and inert characteristics to chemicals. Therefore, it is considered as a potential candidate for the gate dielectric in OTFTs and passivation layer in flexible electronics.
To obtain material properties and fabrication conditions of P(VDF-TrFE-CTFE), in this thesis, it is analyzed by thermal analysis, X-ray diffraction, and atomic force microscope. Using cyclic voltammetry measurements, the energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are estimated as -7.39 and -2.56 eV, respectively. As a consequence, the bandgap of P(VDF-TrFE-CTFE) can be experimentally estimated as 4.83 eV. Based on our experiments, P(VDF-TrFE-CTFE) has high dielectric constant (r > 45 at 1 kHz), high dielectric strength (EBD > 4.25 MV/cm), and high storage stability (> 1000 hours). Utilizing these advantages, P(VDF-TrFE-CTFE) based Schottky-barrier MISFET (metal-insulator-semiconductor field-effect-transistor) has low driving voltage, low threshold voltage (-1.5 V), steeper subthreshold swing (0.997 V/dec), higher on/off ratio (~ 5 orders), smaller hysteresis characteristics (V = 4.8 V), and high storage stability. These experiments demonstrate the potential of P(VDF-TrFE-CTFE) to be used as an organic dielectric in OTFTs.
Utilizing developed P(VDF-TrFE-CTFE) based MIS (metal-insulator-semiconductor) devices, a phenomenon of thickness-dependency dielectric constant is experimentally verified. This is attributed to a low-k interface layer on P(VDF-TrFE-CTFE)/silicon interface. This could result from surface-tension constrained molecules and effects of interface trapped charge. Both of these effect dipole arrangements within the interface layer of P(VDF-TrFE-CTFE). These interfacial properties dominate characteristics of OTFTs with P(VDF-TrFE-CTFE) as gate dielectrics.
目錄

中文摘要 II
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 緒論 1
1-2 軟性電子趨勢 1
1-3 可撓性基板 5
1-4 有機半導體材料 6
1-5 有機導體 7
1-6 有機絕緣層材料與有機保護層材料 8
1-7 研究動機 10
第二章 研究方法與原理 11
2-1 前言 11
2-2 材料分析 13
2-2-1 熱分析 13
2-2-1-1 示差示掃描熱分析 13
2-2-1-2 熱重分析 16
2-2-2 原子力學顯微鏡 16
2-2-3 X射線繞射儀 18
2-2-4 傅立葉轉換紅外光譜儀 20
2-2-5 電化學量測 21
2-3 金氧半場效應電晶體電氣特性 22
2-3-1 金屬/氧化層/半導體電容器 22
2-3-1 金屬/氧化層/半導體場效應電晶體 26
2-4 結論 29
第三章 元件架構與製作流程 30
3-1 前言 30
3-2 溶液製備 30
3-3 垂直式與平面是金屬/絕緣層/金屬電容器 32
3-4 金屬/氧化層/半導體電容器 33
3-5 蕭基能障金屬/絕緣層/半導體場效電晶體 34
3-5-1光罩設計 34
3-5-2 乾蝕刻測試 35
3-5-3 元件製作 38
3-6結論 39
第四章 材料分析 40
4-1 前言 40
4-2 熱分析 40
4-3 結構特性分析 42
4-4 表面粗糙分析 50
4-5 極化特性分析 51
4-6 能帶架構 55
4-7 儲存環境測試 60
4-8 結論 61
第五章 金屬/高分子絕緣層/半導體電容器 62
5-1 前言 62
5-2 閘極漏電流特性分析 63
5-3 介電質特性分析 68
5-4 絕緣層/半導體介面效應 73
5-5 結論 80
第六章 有機薄膜電晶體 81
6-1 前言 81
6-2 汲極電流轉換特性 81
6-3 變化退火條件之元件特性分析 89
6-4 空氣環境儲存穩定度測試 90
6-5 P(VDF-TrFE-CTFE)與PMMA MISFET電氣特性比較 93
6-6 結論 94
第七章 結論與未來展望 96
參考文獻 99
附錄一 105
附錄二 106
附錄三 107
[1]W. Brattain, J. Bardeen, and W. Shockley, Bell Labs logbook pp. 7-8, 1947.
[2]G. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp. 114-118, 1965.
[3]G. Moore, “Progress In Digital Integrated Electronics,” in International Electron Devices Meeting, 1975, pp. 11-13.
[4]D. K. Schroder, Semiconductor Material and Device Characterization: Wiley, 2005.
[5]M.-K. L. Simon M. Sze, Semiconductor Devices: Physics and Technology, 3rd ed.: Wiley, 2013.
[6]D. A. Neamen, An Introduction to Semiconductor Devices: McGraw-Hill Science Engineering, 2005.
[7]X. Huang, L. Chang, K. Asano et al., “Sub-50 nm P-Channel FinFET,” IEEE transactions on electron devices, vol. 48, no. 5, pp. 880-886, 2001.
[8]B. Kumar, B. K. Kaushik, and Y. S. Negi, “Organic Thin Film Transistors: Structures, Models, Materials, Fabrication, and Applications: A Review,” Polymer Reviews, vol. 54, no. 1, pp. 33-111, 2014.
[9]E. Virey, Organic Thin Film Transistor 2016: Flexible Displays and Other Applications 2016 Report by Yole Developpement, Yole Developpement, Yole Developpement, 2016.
[10]D. K. G. Mr Raghu Das, Dr Guillaume Chansin and Dr Xiaoxi He. "Printed, Organic & Flexible Electronics Forecasts, Players & Opportunities 2017-2027," 6th may, 2017.
[11]A. N. Flora Li, Yiliang Wu, Beng S. Ong, Organic Thin Film Transistor Integration: A Hybrid Approach: Wiley, 2011.
[12]W. S. Wong, Salleo, Alberto, Flexible Electronics: springer, 2009.
[13]A. Hart-Davis, Science : The Definitive Visual Guide: Dk Pub, 2015.
[14]J. Zhou, X. Wan, Y. Liu et al., “Small molecules based on benzo[1,2-b:4,5-b'']dithiophene unit for high-performance solution-processed organic solar cells,” J Am Chem Soc, vol. 134, no. 39, pp. 16345-51, Oct 03, 2012.
[15]H. Klauk, Organic Electronics: Materials, Manufacturing, and Applications: Wiley, 2006.
[16]H. Klauk, “Organic thin-film transistors,” Chem Soc Rev, vol. 39, no. 7, pp. 2643-66, Jul, 2010.
[17]L. Duan, L. Hou, T.-W. Lee et al., “Solution processable small molecules for organic light-emitting diodes,” Journal of Materials Chemistry, vol. 20, no. 31, pp. 6392, 2010.
[18]T. Zaki, Short-Channel Organic Thin-Film Transistors: Springer, 2015.
[19]S. B. J. H. Schön, Ch. Kloc, B. Batlogg, “Ambipolar Pentacene Field-Effect Transistors and Inverters,” Science, vol. 287, no. 5455, pp. 1022-1023, 2000.
[20]M. Halik, H. Klauk, U. Zschieschang et al., “Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors,” Advanced Materials, vol. 15, no. 11, pp. 917-922, 2003.
[21]W. C. Donald Lupo , Sven Breitung, Klaus Hecker, OE-A Roadmap for Organic and Printed Electronics: spriner, 2012.
[22]S. P. Tiwari, E. B. Namdas, V. Ramgopal Rao et al., “Solution-Processed n-Type Organic Field-Effect Transistors With High on/off Current Ratios Based on Fullerene Derivatives,” IEEE Electron Device Letters, vol. 28, no. 10, pp. 880-883, 2007.
[23]B. K. Brajesh Kumar Kaushik, Sanjay Prajapati, Poornima Mittal, Organic Thin-Film Transistor Applications: Materials to Circuits: CRC Press, 2016.
[24]K. Lau, Y. Liu, H. Chen et al., “Effect of Annealing Temperature on the Morphology and Piezoresponse Characterisation of Poly(vinylidene fluoride-trifluoroethylene) Films via Scanning Probe Microscopy,” Advances in Condensed Matter Physics, vol. 2013, pp. 1-5, 2013.
[25]H. Purnawali, W. W. Xu, Y. Zhao et al., “Poly(methyl methacrylate) for active disassembly,” Smart Materials and Structures, vol. 21, no. 7, pp. 075006, 2012.
[26]汪建民, 材料分析, 2014.
[27]"Bragg''s Law," 7th May, 2017.
[28]B. E. Warren, X-ray diffraction: Addison-Wesley, 1969.
[29]M. A. Farrukh, Advanced Aspects of Spectroscopy: InTech, 2012.
[30]Z. CHEN, "The Crystallization of Poly(ethylene terephthalate) Studied by Thermal Analysis and FTIR Spectroscopy," 2012.
[31]薛孝亭, 利用奈米間隙之共平面電極探討表面電位與電雙層電容之關聯並作為生物感測器之應用: 國立臺灣大學生醫電子與資訊學研究所, 2016.
[32]N. Wu, Q. Zhang, C. Zhu et al., “Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge substrate,” Applied Physics Letters, vol. 84, no. 19, pp. 3741-3743, 2004.
[33]B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Transactions on Electron Devices, vol. 27, no. 3, pp. 606 - 608, 1980.
[34]B. Miao, J. J. Liu, X. Z. et al., “Ferroelectric relaxation dependence of poly(vinylidene fluoride-co-trifluoroethylene) on frequency and temperature after grafting with poly(methyl methacrylate),” RSC Adv., vol. 6, no. 87, pp. 84426-84438, 2016.
[35]H. Li, K. Tan, Z. Hao et al., “Preparation and crystallization behavior of poly(vinylidene fluoride-ter-chlorotrifluoroethylene- ter-trifluoroethylene),” Journal of Applied Polymer Science, vol. 122, no. 5, pp. 3007-3015, 2011.
[36]S. Murakami, K. Satoh, M. Uno et al., “Preparation of poly(vinylidene difluoride/trifluoroethylene/chlorotrifluoroethylene) terpolymer thin films for dielectric bolometer mode infrared sensors,” physica status solidi (c), vol. 9, no. 12, pp. 2641-2643, 2012.
[37]J. D. Plummer, M. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, 2000.
[38]K. S. Tan, W. C. Gan, T. S. Velayutham et al., “Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles,” Smart Materials and Structures, vol. 23, no. 12, pp. 125006, 2014.
[39]H. H. Gong, B. Miao, X. Zhang et al., “High-field antiferroelectric-like behavior in uniaxially stretched poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)-grafted-poly(methyl methacrylate) films with high energy density,” RSC Adv., vol. 6, no. 2, pp. 1589-1599, 2016.
[40]R. I. Mahdi, W. C. Gan, and W. H. Abd. Majid, “Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators,” Sensors (Basel), vol. 14, no. 10, pp. 19115-27, Oct 14, 2014.
[41]李育德, 高分子導論: 國興出版社, 1985.
[42]A. Kahouli, “Effect of film thickness on structural, morphology, dielectric and electrical properties of parylene C films,” Journal of Applied Physics, vol. 112, no. 6, pp. 064103, 2012.
[43]B. L. Liu, B. B. Tian, J. L. Sun et al., “Confinement effect on coercive field in relaxor terpolymer nanowires,” Applied Surface Science, vol. 355, pp. 473-476, 2015.
[44]S. Oh, Y. Kim, Y. Y. Choi et al., “Fabrication of vertically well-aligned P(VDF-TrFE) nanorod arrays,” Adv Mater, vol. 24, no. 42, pp. 5708-12, Nov 08, 2012.
[45]F. Wen, Z. Xu, W. Xia et al., “High dielectric permittivity and low dielectric loss nanocomposites based on poly(VDF–TrFE–CTFE) and graphene nanosheets,” Journal of Advanced Dielectrics, vol. 03, no. 02, pp. 1350010, 2013.
[46]J. C. Yingying Lu, Bret Neese, Qiming Zhang,and Qing Wang, “A Modular Approach to Ferroelectric Polymers with Chemically Tunable Curie Temperatures and Dielectric Constants,” J. Am. Chem. Soc., vol. 128, no. 25, pp. 8120-8121, 2006.
[47]W. M. Xia, Y. J. Gu, C. Y. You et al., “A crystal phase transition and its effect on the dielectric properties of a hydrogenated P(VDF-co-TrFE) with low TrFE molar content,” RSC Adv., vol. 5, no. 130, pp. 107557-107565, 2015.
[48]X. J. Meng, J. L. Wang, H. S. Xu et al., “The effect of ac field amplitude on the relaxor behaviors in Langmuir–Blodgett terpolymer films,” Journal of Applied Physics, vol. 106, pp. 114106, 2009.
[49]Y. H. Chen, Y. D. Xia, H. D. Sun et al., “Solution-Processed Highly Efficient Alternating Current-Driven Field-Induced Polymer Electroluminescent Devices Employing High-kRelaxor Ferroelectric Polymer Dielectric,” Advanced Functional Materials, vol. 24, no. 11, pp. 1501-1508, 2014.
[50]P. Martins, A. C. Lopes, and S. Lanceros-Mendez, “Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications,” Progress in Polymer Science, vol. 39, no. 4, pp. 683-706, 2014.
[51]J. Li, S. Tan, S. Ding et al., “High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application,” Journal of Materials Chemistry, vol. 22, no. 44, pp. 23468, 2012.
[52]J. J. Li, H. H. Gong, Q. Yang et al., “Linear-like dielectric behavior and low energy loss achieved in poly(ethyl methacrylate) modified poly(vinylidene-co-trifluoroethylene),” Applied Physics Letters, vol. 104, no. 26, pp. 263901, 2014.
[53]M. V. Alonso, M. L. Auad, U. Sorathia et al., “Barrier properties for short-fiber-reinforced epoxy foams,” Journal of Applied Polymer Science, vol. 102, no. 4, pp. 3266-3272, 2006.
[54]X. Z. Chen, X. Chen, X. Guo et al., “Ordered arrays of a defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption,” Nanoscale, vol. 6, no. 22, pp. 13945-51, Nov 21, 2014.
[55]C. S. Ferreira, P. L. Santos, J. A. Bonacin et al., “Rice Husk Reuse in the Preparation of SnO2/SiO2Nanocomposite,” Materials Research, vol. 18, no. 3, pp. 639-643, 2015.
[56]S. MusićI, N. Filipović-Vinceković, and a. L. Sekovanić, “Precipitation of amorphous SiO2 particles and their properties,” Brazilian Journal of Chemical Engineering, vol. 28, no. 1, pp. 89-94, 2011.
[57]H. Khan, D. Mamaluy, and D. Vasileska, “Influence of interface roughness on quantum transport in nanoscale FinFET,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 25, no. 4, pp. 1437, 2007.
[58]E. D. B. Lieyi Sheng, and Dominique Wojciechowski, “Surface Roughness Enhanced Current in Defectively Stressing Poly-Oxide-Poly Capacitors,” in IEEE International Integrated Reliability Workshop, 2006.
[59]X. Sun, C. A. Di, and Y. Liu, “Engineering of the dielectric–semiconductor interface in organic field-effect transistors,” Journal of Materials Chemistry, vol. 20, no. 13, pp. 2599, 2010.
[60]J. H. Kwon, X. Zhang, S. H. Piao et al., “Stability Study of Flexible 6,13-Bis(triisopropylsilylethynyl)pentacene Thin-Film Transistors with a Cross-Linked Poly(4-vinylphenol)/Yttrium Oxide Nanocomposite Gate Insulator,” Polymers, vol. 8, no. 3, pp. 88, 2016.
[61]D. Braga, and G. Horowitz, “High-Performance Organic Field-Effect Transistors,” Advanced Materials, vol. 21, no. 14-15, pp. 1473-1486, 2009.
[62]S. S. Chang, A. B. Rodríguez, A. M. Higgins et al., “Control of roughness at interfaces and the impact on charge mobility in all-polymer field-effect transistors,” Soft Matter, vol. 4, no. 11, pp. 2220, 2008.
[63]Y. Don Park, J. A. Lim, H. S. Lee et al., “Interface engineering in organic transistors,” Materials Today, vol. 10, no. 3, pp. 46-54, 2007.
[64]F. Y. Yang, K. J. Chang, M. Y. Hsua et al., “High-performance poly(3-hexylthiophene) transistors with thermally cured and photo-cured PVP gate dielectrics,” Journal of Materials Chemistry, vol. 18, pp. 5927-5932, 2008.
[65]W.-H. Lee, C. C. Wang, and J. C. Ho, “Improved performance of pentacene field-effect transistors using a nanocomposite gate dielectric,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 27, no. 2, pp. 601, 2009.
[66]M. Mottaghi, and G. Horowitz, “Field-induced mobility degradation in pentacene thin-film transistors,” Organic Electronics, vol. 7, no. 6, pp. 528-536, 2006.
[67]J. Park, S. Y. Park, S.-O. Shim et al., “A polymer gate dielectric for high-mobility polymer thin-film transistors and solvent effects,” Applied Physics Letters, vol. 85, no. 15, pp. 3283-3285, 2004.
[68]S. Steudel, S. De Vusser, S. De Jonge et al., “Influence of the dielectric roughness on the performance of pentacene transistors,” Applied Physics Letters, vol. 85, no. 19, pp. 4400, 2004.
[69]L. L. Chua, P. K. H. Ho, H. Sirringhaus et al., “Observation of Field-Effect Transistor Behavior at Self-Organized Interfaces,” Advanced Materials, vol. 16, no. 18, pp. 1609-1615, 2004.
[70]M. L. Chabinyc, R. Lujan, F. Endicott et al., “Effects of the surface roughness of plastic-compatible inorganic dielectrics on polymeric thin film transistors,” Applied Physics Letters, vol. 90, no. 23, pp. 233508, 2007.
[71]Y. Xia, J. H. Cho, J. Lee et al., “Comparison of the Mobility-Carrier Density Relation in Polymer and Single-Crystal Organic Transistors Employing Vacuum and Liquid Gate Dielectrics,” Advanced Materials, vol. 21, no. 21, pp. 2174-2179, 2009.
[72]J. L. Z. Bao, Organic Field-Effect Transistors: CRC Press, 2007.
[73]G. H. Haertling, “Ferroelectric Ceramics: History and Technology,” J. Am. Ceram. Soc, vol. 82, no. 4, pp. 797-818, 1999.
[74]G. S. Franco Jona, Ferroelectric Crystals, New York: Pergamon, 1993.
[75]M. Stewart, Cain, M G, Hall, D A, Ferroelectric hysteresis measurement and analysis: NPL Reports, 1999.
[76]O. R. Luca, J. L. Gustafson, S. M. Maddox et al., “Catalysis by electrons and holes: formal potential scales and preparative organic electrochemistry,” Org. Chem. Front., vol. 2, no. 7, pp. 823-848, 2015.
[77]H.-J. Yen, and G.-S. Liou, “Enhanced near-infrared electrochromism in triphenylamine-based aramids bearing phenothiazine redox centers,” Journal of Materials Chemistry, vol. 20, no. 44, pp. 9886, 2010.
[78]S.-H. Hsiao, Y.-H. Hsiao, and Y.-R. Kung, “Highly redox-stable and electrochromic aramids with morpholinyl-substituted triphenylamine units,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 54, no. 9, pp. 1289-1298, 2016.
[79]J. D. Casperson, L. D. Bell, and H. A. Atwater, “Materials issues for layered tunnel barrier structures,” Journal of Applied Physics, vol. 92, no. 1, pp. 261-267, 2002.
[80]K. K. Likharev, “Layered tunnel barriers for nonvolatile memory devices,” Applied Physics Letters, vol. 73, no. 15, pp. 2137-2139, 1998.
[81]L. Yueran, S. Dey, T. Shan et al., “Improved performance of SiGe nanocrystal memory with VARIOT tunnel barrier,” IEEE Transactions on Electron Devices, vol. 53, no. 10, pp. 2598-2602, 2006.
[82]D. B. A. R. Blythe, Electrical Properties of Polymers, U.K.: Cambridge University Press, 2005.
[83]S. Jung, C.-H. Kim, Y. Bonnassieux et al., “Injection barrier at metal/organic semiconductor junctions with a Gaussian density-of-states,” Journal of Physics D: Applied Physics, vol. 48, no. 39, pp. 395103, 2015.
[84]S. Kar, Physics and Technology of High-k Gate Dielectrics: ECS transactions, 2007.
[85]H. Kim, P. C. McIntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Applied Physics Letters, vol. 82, no. 1, pp. 106-108, 2003.
[86]D. A. Neumayer, and E. Cartier, “Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition,” Journal of Applied Physics, vol. 90, no. 4, pp. 1801-1808, 2001.
[87]E. C. T. Haccart, D. Remiens, “Dielectric, ferroelectric and piezoelectric properties of sputtered PZT thin films on Si substrates: influence of film thickness and orientation,” Semiconductor Physics, Quantum Electronics & Optoelectronics, vol. 5, no. 1, pp. 78-88, 2002.
[88]Q. M. Zhang, H. Xu, F. Fang et al., “Critical thickness of crystallization and discontinuous change in ferroelectric behavior with thickness in ferroelectric polymer thin films,” Journal of Applied Physics, vol. 89, no. 5, pp. 2613-2616, 2001.
[89]K. H. K. a. D. B. Farme, “Atomic layer deposition of gadolinium scandate films with high dielectric constant and low leakage current,” Applied Physics Letters, vol. 89, no. 13, pp. 133512, 2006.
[90]B. H. Lee, L. Kang, W.-J. Qi et al., “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” in Electron Devices Meeting, 1999.
[91]L. Pintilie, I. Vrejoiu, D. Hesse et al., “Extrinsic contributions to the apparent thickness dependence of the dielectric constant in epitaxialPb(Zr,Ti)O3thin films,” Physical Review B, vol. 75, no. 22, 2007.
[92]H. Xu, J. Zhong, X. Liu et al., “Ferroelectric and switching behavior of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface,” Applied Physics Letters, vol. 90, no. 9, pp. 092903, 2007.
[93]S. L. Li, K. Tsukagoshi, E. Orgiu et al., “Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors,” Chem Soc Rev, vol. 45, no. 1, pp. 118-51, Jan 07, 2016.
[94]F. Xia, H. Xu, F. Fang et al., “Thickness dependence of ferroelectric polarization switching in poly(vinylidene fluoride–trifluoroethylene) spin cast films,” Applied Physics Letters, vol. 78, no. 8, pp. 1122-1124, 2001.
[95]H. Xu, “Dielectric properties and ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene) 50/50 copolymer ultrathin films,” Journal of Applied Polymer Science, vol. 80, no. 12, pp. 2259-2266, 2001.
[96]Haisheng Xu, Suolong Ni, and C. Yang, “High polarization levels in poly(vinylidene fluoride–trifluoroethylene) ferroelectric thin films doped with diethyl phthalate,” Journal of Applied Polymer Science, vol. 8, no. 6, pp. 1416-1419, 2003.
[97]Y. Lu, J. Claude, B. Neese et al., “A Modular Approach to Ferroelectric Polymers with Chemically Tunable Curie Temperatures and Dielectric Constants,” J. Am. Chem. Soc., vol. 128, no. 25, pp. 8120-8121, 2006.
[98]C. Miramond, and D. Vuillaume, “1-octadecene monolayers on Si(111) hydrogen-terminated surfaces: Effect of substrate doping,” Journal of Applied Physics, vol. 96, no. 3, pp. 1529-1536, 2004.
[99]R. Kappera, D. Voiry, S. E. Yalcin et al., “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat Mater, vol. 13, no. 12, pp. 1128-34, Dec, 2014.
[100]J. M. Larson, and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1048-1058, 2006.
[101]A. V. Penumatcha, R. B. Salazar, and J. Appenzeller, “Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model,” Nat Commun, vol. 6, pp. 8948, Nov 13, 2015.
[102]F. J. G. a. S. A. Ortiz-Conde , J.J. Liou, A. Cerdeira, , M. Estrada, Y. Yued “A review of recent MOSFET threshold voltage extraction methods,” Microelectronics Reliability, vol. 42, no. 4-5, pp. 583-596, 2002.
[103]N. H. Van, J.-H. Lee, D. Whang et al., “Low-Programmable-Voltage Nonvolatile Memory Devices Based on Omega-shaped Gate Organic Ferroelectric P(VDF-TrFE) Field Effect Transistors Using p-type Silicon Nanowire Channels,” Nano-Micro Letters, vol. 7, no. 1, pp. 35-41, 2014.
[104]L. Xiang, W. Wang, and W. Xie, “Achieving high mobility, low-voltage operating organic field-effect transistor nonvolatile memory by an ultraviolet-ozone treating ferroelectric terpolymer,” Sci Rep, vol. 6, pp. 36291, Nov 08, 2016.
[105]H. Yan, Z. Chen, Y. Zheng et al., “A high-mobility electron-transporting polymer for printed transistors,” Nature, vol. 457, no. 7230, pp. 679-86, Feb 05, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊