跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 05:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張太瑋
研究生(外文):Tai-Wei Chang
論文名稱:鍺錫合金平面式光電元件之溫度相關性研究
論文名稱(外文):Temperature-dependent electroluminescence from GeSn planar light emitting diode on Si substrate
指導教授:林致廷林致廷引用關係鄭鴻祥鄭鴻祥引用關係
指導教授(外文):Chih-Ting LinHung-Hsiang Cheng
口試委員:洪冠明余英松賈至達
口試委員(外文):Kuan-Ming HungIng-Song YUChih-Ta Chia
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:61
中文關鍵詞:鍺錫合金發光二極體電致發光溫度相關
外文關鍵詞:GeSnLight emitting diodeElectroluminescenceTemperature dependent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本實驗中,以分子束磊晶技術成長鍺錫合金材料為PIN結構發光二極體的主要發光層。較高的電子遷移率與較小的能隙差距也是我們選用鍺錫合金材料在該實驗的主因。由於現今廣泛的紅外光科技應用,我們可以藉由在鍺錫合金中調整錫的含量,達到延長發光二極體的發光波長。藉由如此的技術,使得光電工程應用中可以達到更加不同的發展與應用。

特別是我們也針對在不同溫度下,成長於矽基板上的鍺錫合金材料於PIN結構中的發光二極體作電致發光的實驗調查。在此實驗調查中,施以低電流注入和低錫含量作為實驗條件。並在電致發光實驗前,先作電壓電流曲線證實此發光二極體具有整流效果且確認製程的成功。同時在接下來的電致發光實驗中,我們成功獲得了此鍺錫合金材料發光二極體的電致發光所產生的間接能隙光響應。並藉此瞭解了溫度和間接能隙間的關係與描述式的相關參數。
In this study, GeSn is the main material of active layer grown by MBE (molecular beam epitaxy) for planar p-i-n light emitting diode. The higher electron mobility and smaller bandgap energy are the main reasons we chose GeSn for our experiment. Due to the widely spread of infrared technical applications, we also can adjust Sn content in GeSn material to extend its wavelength of excitation so that different optical and electrical engineering application might be developed.

In particular, the electroluminescence from our GeSn p-i-n planar light emitting diode on Si was investigated under different temperatures ranging from 30 to 300 K. The light emitting diode was operated at the low current injection, and the I-V curve measurement was successfully carried out to verify its availability. We obtained no-phonon assisted band to band transition from indirect bandgap in electroluminescence emission spectra. Also, the relationship between indirect bandgap energy and temperature was investigated. The parameters of temperature-dependent bandgap energy followed Varshni’s empirical expression were investigated.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
FIGURE INDEX iV
TABLE INDEX Vi
CONTENTS Vii

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Band-gap engineering and group IV semiconductor materials 3
1.3 Strain effect 5
1.4 GeSn alloy 7
1.5 Group IV optical device and temperature effect 9
1.5.1 Luminescence with light emitting diode 9
1.5.2 Temperature dependent principle 10
1.6 Optical cavity effect for planar structure 13

Chapter 2 Fabrication equipment and measurement setup 15
2.1 Fabrication equipment 15
2.1.1 Molecular equipment 16
2.1.2 Mask aligner 17
2.1.3 Reactive ion etcher 19
2.1.4 Ion implanter 20
2.1.5 Plasma enhanced chemical vapor deposition 22
2.1.6 Electron beam metal evaporator 23
2.1.7 Manual wire bonder 24
2.2 Measurement setup 26
2.2.1 Transmission electron microscope 26
2.2.2 X-ray diffraction 27
2.2.3 Laboratory cryogenic system 28

Chapter 3 Fabrication of planar p-i-n light emitting diode 30
3.1 Introduction 30
3.2 Fabrication of device 32
3.2.1 Sample structure and characteristics 32
3.2.2 Device processing of light emitting diode 38

Chapter 4 Temperature dependent EL measurement of active layer planar p-i-n light emitting diode 49
4.1 Introduction 49
4.2 Measurement setup and process 49
4.3 Result and discussion 51
4.3.1 Dark current-voltage characteristics 51
4.3.2 The temperature-dependent electroluminescence characteristics 53

Chapter 5 Conclusions and future work 57
5.1 Conclusions 57
5.2 Future Work 57

REFERENCE 58
[1] H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, Applied Physics Letters 102, 182106 (2013)

[2] C. Chang, H. Li, S. H. Huang, H. H. Cheng, G. Sun, and R. A. Soref, Applied Physics Letters 108, 151101 (2016)

[3] Yiyin Zhou, Wei Dou, Wei Du, , Thach Pham, Seyed Amir Ghetmiri, Sattar Al-Kabi, Aboozar Mosleh, Murtadha Alher, Joe Margetis, John Tolle, Greg Sun, Richard Soref, Baohua Li, Mansour Mortazavi, Hameed Naseem, and Shui-Qing Yu, Journal of Applied Physics 120, 023102 (2016)

[4] Jay Prakash Gupta, Nupur Bhargava, Sangcheol Kim, Thomas Adam, and James Kolodzey, Appl. Phys. Lett. 102, 251117 (2013)

[5] Chiao Chang, Hui Li, Ssu-Hsuan Huang, Li-Chien Lin, and Hung-Hsiang Cheng, Japanese Journal of Applied Physics 55, 04EH03 (2016)

[6] Wei Du, , Seyed A. Ghetmiri, Benjamin R. Conley, Aboozar Mosleh, Amjad Nazzal, Richard A. Soref, Greg Sun, John Tolle, Joe Margetis, Hameed A. Naseem, and Shui-Qing Yu, Appl. Phys. Lett. 105, 051104 (2014)

[7] Seyed Amir Ghetmiri, Wei Du, , Joe Margetis, Aboozar Mosleh, Larry Cousar, Benjamin R. Conley, Lucas Domulevicz, Amjad Nazzal, Greg Sun, Richard A. Soref, John Tolle, Baohua Li, Hameed A. Naseem, and Shui- Qing Yu, Appl. Phys. Lett. 105, 151109 (2014)

[8] J. D. Gallagher, C. L. Senaratne, P. Sims, T. Aoki, J. Menéndez, and J. Kouvetakis, Appl. Phys. Lett. 106, 091103 (2015)

[9] Erich Kasper and Michael Oehme, Japanese Journal of Applied Physics 54, 04DG11 (2015)

[10]H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, , G. E. Chang, R. A. Soref, and G. Sun, Appl. Phys. Lett. 103, 231907 (2013)

[11] Wei Du, , Yiyin Zhou, Seyed A. Ghetmiri, Aboozar Mosleh, Benjamin R. Conley, Amjad Nazzal, Richard A. Soref, Greg Sun, John Tolle, Joe Margetis, Hameed A. Naseem, and Shui-Qing Yu, Appl. Phys. Lett. 104, 241110 (2014)

[12] Mee-Yi Ryu, Tom R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, APPLIED PHYSICS LETTERS 102, 171908 (2013)

[13] J. D. Gallagher, C. L. Senaratne, C. Xu, P. Sims, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, Journal of Applied Physics 117, 245704 (2015)

[14] Chung-Yi Lin, Chih-Hsiung Huang, Shih-Hsien Huang, Chih-Chiang Chang, C. W. Liu, , Yi-Chiau Huang, Hua Chung, and Chorng-Ping Chang, Appl. Phys. Lett. 109, 091103 (2016)

[15] Wei Dou, Seyed Amir Ghetmiri, Sattar Al-Kabi, Aboozar Mosleh, Yiyin Zhou, Bader Alharthi, Wei Du, Joe Margetis, John Tolle, Andrian Kuchuk,
Mourad Benamara, Baohua Li, Hameed A. Naseem, Mansour Mortazavi, and Shui-Qing Yu, Journal of Electronic Materials, Vol. 45, No. 12, 2016

[16] Suyog Gupta., Germanium-Tin (GeSn) Technology., Stanford University, Aug, 2013

[17] Seyed Amir Ghetmiri, Wei Du, Benjamin R. Conley, Aboozar Mosleh, Amjad Nazzal, Greg Sun, Richard A. Soref , Joe Margetis, John Tolle, Hameed A. Naseem, and Shui-Qing Yu, Journal of Vacuum Science & Technology B 32, 060601 (2014)

[18] Kaiheng Ye, Wogong Zhang, Michael Oehme, Marc Schmid, Martin Gollhofer, Konrad Kostecki, Daniel Widmann, Roman Körner, Erich Kasper, Jörg Schulze, Solid-State Electronics 110 (2015)

[19] M. Oehme, J. Werner, M. Gollhofer, M. Schmid, M. Kaschel, E. Kasper, Member, IEEE, and J. Schulze, Member, IEEE, IEEE Photonics Technology Letters, Vol. 23, No. 23, December 1, 2011

[20]L Jiang, J D Gallagher, C L Senaratne, T Aoki, J Mathews, J Kouvetakis and J Menéndez, Semicond. Sci. Technol. 29 (2014) 115028

[21]Hai Lin, Robert Chen, Weisheng Lu , Yijie Huo, Theodore I. Kamins, and James S. Harris, Appl. Phys. Lett. 100, 102109 (2012)

[22]Hai Lin, Growth and Characterization of GeSn and SiGeSn Alloys for Optical Interconnects, Stanford University, Dept. of Materials Science and Engineering, 2012

[23]Hung Hsiang Cheng, “Development of Mid-infrared GeSn Light Emitting Diodes on a Silicon Substrate”, Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taiwan R.O.C., Final Report for AOARD Grant AOARD-134092, 2015

[24]National Nano Device Laboratories, “Introduction of The Varian Ion Implant Systems”, [online]. Available: http://www.ndl.narl.org.tw/tech/equipment

[25]Avinash P. Nayak, Logeeswaran VJ, M. Saif Islam, “Wet and Dry Etching”, University of California, Davis. California.

[26]Onno Gabriel, Simon Kirner, Michael Klick, Bernd Stannowski, and Rutger Schlatmann, EPJ Photovoltaics 5, 55202 (2014)

[27]Luciano Nascimento, Lourdes Cristina Lucena Agostinho Jamshidi, Celmy Maria B. de Menezes Barbosa, Reza Jamshidi Rodbari, Maringá, v. 24, p.81-93, 2015

[28]Inseto, “4526 Manual Wedge Bonder with Analog Controls”, [online] Available: https://www.inseto.co.uk/microelectronic-equipment-mpp-4526-wedge-bonder.php

[29]K. P. O’Donnell and X. Chen, Appl. Phys. Lett. 58, 2924 (1991).

[30]Y. P. Varshni, Physica 34, 149 (1967).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊