跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/03 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍崇源
研究生(外文):Chung-Yuan Lan
論文名稱:針對多電子束直寫系統之鄰近效應修正
論文名稱(外文):Proximity Effect Correction for Multiple Electron Beam Direct Write Systems
指導教授:陳中平陳中平引用關係
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:64
中文關鍵詞:電子束曝光電子束鄰近效應修正鄰近效應電子束直寫系統電子束
外文關鍵詞:LithographyElectron BeamEPCE-beam Proximity CorrectionMEBDW
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著製程演進,超大型積體電路之最小關鍵尺寸已到達物理極限,傳統光學曝光使用的光源因解析度已到達極限而逐漸無法滿足需求,有許多下一代製程的曝光系統被提出,電子束曝光是其中具有潛力者。電子束因為其高解析度及精準性,可以精準地將電路資訊傳至曝光系統。許多在資料傳輸上遇到的問題,例如其產出的限制,可藉由大量平行的電子束系統來克服,資料壓縮的技術也能解決電子束曝光系統在傳輸方面的限制。然而,曝光過程中電子的各種效應仍需要解決,本篇論文主要針對鄰近效應,鄰近效應是電子的散射所造成的現象,會造成額外不需要的曝光,而使得曝光後的電路與實際電路有所
差距,這個差別可能會讓電路效能不彰,是個需要解決的議題。本篇論文將要探討的問題是,如何在不變更大量平行之電子束系統中的各項參數設定之下,改變原先的電路佈局,使其在正常曝光程序之後能與實際電路差距不遠,用以修正鄰近效應造成的影響,這個方法稱作為電子束鄰近效應修正。本篇論文提出的修正方法,大幅改善鄰近效應的影響。然而,此方法因故使原先電路佈局變得更加複雜,而造成壓縮效能降低。因此,修正的好壞程度必須與壓縮效能取得平衡點,本篇論文亦提出考慮壓縮效能的修正方法,得以證明兩者結合的演算法具有發展的潛力與研究價值。
The feature size of Integrated Circuits (IC) is getting smaller and smaller due to the desired continuation of Moore’s Law, but the resolution of today’s techniques is not enough. Hence, various candidates of next-generation lithography are presented. Electron beam lithography is a potential next-generation lithography because of its high resolution and accuracy. The drawback of e-beam lithography is its low throughp ut, which can be solved by applying a massive parallel writing system. In addition, compression algorithms are proposed to compensate the low speed of e-beam systems. However, some process effects are needed to be improved. Among them, proximity effect causes the original layout circuit differ from the exposed one, which may fail the whole circuit and is intolerable. In this thesis, we proposed rule-base electron beam proximity correction (EPC) methods to modify the original input circuits before the exposure process. The purpose is not to modify the parameters of the e-beam system while compensate the influence of proximity effect after exposure. There is a trade-off between correction and compression, and we conclude that these two techniques can be combined to find a balance between them.
口試委員審定書 ................................................................................................................ i
誌謝 ................................................................................................................................... ii
中文摘要 .......................................................................................................................... iii
ABSTRACT ..................................................................................................................... iv
CONTENTS ...................................................................................................................... v
LIST OF FIGURES ......................................................................................................... vii
LIST OF TABLES ............................................................................................................. x
Chapter 1 Introduction ..............................................................................................1
1.1 Lithography.....................................................................................................2
1.2 Motivation and Contribution ..........................................................................4
1.3 Organization....................................................................................................5
Chapter 2 Preliminaries.............................................................................................6
2.1 Multiple Electron Beam Lithography .............................................................6
2.1.1 MAPPER ...............................................................................................7
2.1.2 Reflective Electron Beam Lithography ...............................................10
2.2 Proximity Effect............................................................................................15
2.3 Electron Beam Proximity Correction Methods ............................................21
2.3.1 Dose Modification ...............................................................................21
2.3.2 Shape Modification .............................................................................24
2.3.3 Other Methods .....................................................................................25
2.4 Data Compression Algorithms......................................................................27
Chapter 3 Methodology ...........................................................................................31
3.1 Specifications................................................................................................31
3.2 Modeling .......................................................................................................33
3.3 Rule-based Electron Beam Proximity Correction ........................................38
Chapter 4 Experime ntal Results .............................................................................45
Chapter 5 Conclusion and Future Work ................................................................59
REFERENCE ..................................................................................................................61
[1] C. K. Tang, M. S. Su, and Y. C. Lu, "LineDiff Entropy: Lossless Layout Data Compression Scheme for Maskless Lithography Systems," IEEE Signal
Processing Letters, vol. 20, no. 7, pp. 645-648, 2013.
[2] C. C. Wu, J. Yang, W. C. Wang, and S. J. Lin, "An instruction-based highthroughput lossless decompression algorithm for e-beam direct-write system," Proc. SPIE, vol. 9423, pp. 94231P-94231P-6, 2015.
[3] Y. W. Chang, R. G. Liu, and S. Y. Fang, "EUV and e-beam manufacturab il it y: Challenges and solutions," in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp. 1-6.
[4] J. Yang and S. A. Savari, "A Lossless Circuit Layout Image Compression Algorithm for Maskless Lithography Systems," in 2010 Data Compression Conference, 2010, pp. 109-118.
[5] L. Chamness. (2017, March 2017). SEMI® Photomask Characterization Summary (Report) [Online]. Availab le :
http://www.semi.org/en/Store/MarketInformation/materials/ctr_027221
[6] P. Petric et al., "REBL nanowriter: Reflective Electron Beam Lithography," Proc. SPIE, Alternative Lithographic Technologies vol. 7271, 2009.
[7] M. Rajesh, P. Amil, G. Dario, and S. H. I., "Maskless lithography," Materials Today, vol. 8, no. 2, pp. 26-33, 2005.
[8] V. Kuiper et al., "MAPPER: High Throughput Maskless Lithography," in 25th European Mask and Lithography Conference, 2009, pp. 1-5.
[9] A. v. d. Kraats and R. Murali. Proximity Effect in E-beam Lithography [Online]. Available: http://nanolithography.gatech.edu/proximity.htm
[10] T. H. P. Chang, "Proximity effect in electron‐beam lithography," Journal of Vacuum Science and Technology, vol. 12, no. 6, pp. 1271-1275, 1975.
[11] A. R. Couture, P. Horny, D. Drouin, P. Hovongton, and R. Gauvin. (2016). Casino: monte CArlo SImulation of electroN trajectory in sOlids [Online]. Availab le :
http://www.gel.usherbrooke.ca/casino/index.html
[12] S. V. Babin, S. Borisov, E. Cheremukhin, E. Grachev, V. Korol, and L. E. Ocola, "Software tool for advanced Monte Carlo simulation of electron scattering in EBL
and SEM: CHARIOT," 2003, vol. 5037, pp. 583-590.
[13] M. Urbánek, V. Kolařík, S. Krátký, M. Matějka, M. Horáček, and J. Chlumská, "Monte-Carlo simulation of proximity effect in e-beam lithography," in
NANOCON 2013. 5th International conference proceedings, 2013, pp. 723-726.
[14] C. H. Chen et al., "Impact of proximity model inaccuracy on patterning in electron beam lithography," 2013, vol. 8880, pp. 888014-888014-7.
[15] C. H. Liu, P. C. W. Ng, Y. T. Shen, S. W. Chien, and K. Y. Tsai, "Impacts of point spread function accuracy on patterning prediction and proximity effect correction
in low-voltage electron-beam–direct-write lithography," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, no. 2, p. 021605, 2013.
[16] P. Li, "A Review of Proximity Effect Correction in Electron-beam Lithograp hy, "Physics, 2015.
[17] M. Parikh, "Self‐consistent proximity effect correction technique for resist exposure (SPECTRE)," Journal of Vacuum Science and Technology, vol. 15, no.
3, pp. 931-933, 1978.
[18] M. Parikh, "Corrections to proximity effects in electron beam lithography. I. Theory," Journal of Applied Physics, vol. 50, no. 6, pp. 4371-4377, 1979.
[19] M. Parikh, "Corrections to proximity effects in electron beam lithography. II. Implementation," Journal of Applied Physics, vol. 50, no. 6, pp. 4378-4382, 1979.
[20] M. Parikh, "Corrections to proximity effects in electron beam lithograhy. III. Experiments," Journal of Applied Physics, vol. 50, no. 6, pp. 4383-4387, 1979.
[21] H. Sewell, "Control of pattern dimensions in electron lithography," Journal of Vacuum Science and Technology, vol. 15, no. 3, pp. 927-930, 1978.
[22] M. Parikh, "Calculation of changes in pattern dimensions to compensate for proximity effects in electron lithography," Journal of Applied Physics, vol. 51, no.
1, pp. 705-709, 1980.
[23] L. Soo Young and B. D. Cook, "PYRAMID-a hierarchical, rule-based approach toward proximity effect correction. I. Exposure estimation," IEEE Transactions on Semiconductor Manufacturing, vol. 11, no. 1, pp. 108-116, 1998.
[24] B. D. Cook and L. Soo Young, "PYRAMID-a hierarchical, rule-based approach toward proximity effect correction. II. Correction," IEEE Transactions on Semiconductor Manufacturing, vol. 11, no. 1, pp. 117-128, 1998.
[25] T. Klimpel, M. Schulz, R. Zimmermann, H. J. Stock, and A. Zepka, "Model based hybrid proximity effect correction scheme combining dose modulation and shape adjustments," Journal of Vacuum Science & Technology B, Nanotechnology and
Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 29, no. 6, p. 06F315, 2011.
[26] N. Chaudhary, Y. Luo, S. A. Savari, and R. McCay, "Lossless layout image compression algorithms for electron-beam direct-write lithography," Journal of
Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 33, no. 6, p. 06FD01, 2015.
[27] J. Yang and S. A. Savari, "A lossless circuit layout image compression algorithm for electron beam direct write lithography systems," 2011, vol. 7970, pp. 79701U-
79701U-12.
[28] J. Yang and S. A. Savari, "Improvements on Corner2, a lossless layout image compression algorithm for maskless lithography systems," 2012, vol. 8352, pp. 83520K-83520K-9.
[29] J. Yang, S. A. Savari, and H. R. Harris, "Datapath system for multiple electron beam lithography systems using image compression," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 12, no. 3, pp. 033018-033018, 2013.
[30] International Technology Roadmap for Semiconductors [Online]. Availab le : http://www.itrs.net/
[31] J. Yang, "Lossless Circuit Layout Image Compression Algorithms for Multip le Electron Beam Direct Write Lithography Systems," Ph.D. dissertation, Univers it y
of Michigan, 2012.
[32] S. J. Lin et al., "Influence of data volume and EPC on process window in massively parallel e-beam direct write," 2013, vol. 8680, pp. 86801C-86801C-15.
[33] Y. H. Chiu, "Data Compression Ratio-aware Detailed Routing for Multiple EBeam Direct Write Systems," M.S. thesis, 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊