|
[1] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, T.-J. King, J. Bokor, and C. Hu. FinFET-A self-aligned double-gate MOSFET scalable beyond 20 nm. IEEE Transactions on Electron Devices 47.12 (2000): 2320-2325. [2] E. J. Nowak, I. Aller, T. Ludwig, K. Kim, R. V. Joshi, C.-T. Chuang, K. Bernstein, and R. Puri. Turning silicon on its edge. IEEE Circuits and Devices Magazine, 20(1):20–31, Jan.-Feb. 2004. [3] X. Huang, W.-C. Lee, C. Ku, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, and C. Hu. Sub 50-nm FinFET: PMOS. In IEDM Tech. Dig., 1999, pp. 67–70 [4] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, J. Bokor, and C. Hu. FinFET scaling to 10 nm gate length. In Int. Electron Devices Meeting, 2002, pp. 251–254. [5] M. Alioto. Analysis of layout density in FinFET standard cells and impact of fin technology. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), May 30 2010-June 2 2010 [6] Jamil Kawa. FinFET Design, Manufacturability, and Reliability. https://www.synopsys.com/designware-ip/technical-bulletin/finfet-design.html [7] Wikipedia [Online]. https://en.wikipedia.org/wiki/Multigate_device [8] Topaloglu, Rasit O. Design with FinFETs: Design rules, patterns, and variability. Computer-Aided Design (ICCAD), 2013 IEEE/ACM International Conference on. IEEE, 2013. [9] K. Bhanushali and W. R. Davis. FreePDK15: An Open-Source Predictive Process Design Kit for 15nm FinFET Technology. In Proc. of Int’l Symp. on Physical Design (ISPD), 2015. [10] P. Schuddinck, M. Badaroglu, M. Stucchi, S. Demuynck, A. Hikavyy, M. Garcia-Bardon, A. Mercha, A. Mallik, T. Chiarella, S. Kubicek, R. Athimulam, N. Collaert, N. Horiguchi, I. Debusschere, A. Thean, L. Altimime, and D. Verkest. Standard cell level parasitics assessment in 20nm bpl and 14nm bff. In Electron Devices Meeting (IEDM), IEEE International, 2012, pp. 25.3.1–25.3.4. [11] T. Kauerauf, A. Branka, G. Sorrentino, P. Roussel, S. Demuynck, K. Croes, K. Mercha, J. Bommels, Z. Tokei, and G. Groeseneken. Reliability of MOL local interconnects. InIEEE International Reliability Physics Symposium (IRPS), 2013, pp. 2F–5. [12] K. Bhanushali. Design Rule Development for FreePDK15: An Open Source Predictive Process Design Kit for 15nm FinFET Devices. diploma thesis, North Carolina State University, Raleigh, NC 27695, May 2014. [13] Victor Moroz. FinFET structure design and variability analysis enabled by TCAD. http://www.edn.com/design/eda-design/4398011/2/ FinFET-structure-design-and-variability-analysis-enabled-by-TCAD-, 2012. [Online; accessed 4-July-2013]. [14] T. Dillinger. Challenges for FinFET extraction. In IEEE Electronic Design Symposium, 2013. [15] Du, Yuelin, and Martin DF Wong. Optimization of standard cell based detailed placement for 16 nm FinFET process. In Proceedings of the conference on Design, Automation & Test in Europe. European Design and Automation Association, 2014. [16] Martins, M., Matos, J. M., Ribas, R. P., Reis, A., Schlinker, G., Rech, L., and Michelsen, J. Open cell library in 15nm FreePDK technology. In Proceedings of the 2015 Symposium on International Symposium on Physical Design. ACM, 2015. p. 171-178. [17] P.-H. Wu, M. P.-H. Lin, T.-C. Chen, T.-Y. Ho, Y.-C. Chen, S.-R. Siao, and S.-H. Lin. 1-D Cell Generation With Printability Enhancement. IEEE Transactions on Computer-Aided Design, 32(3):419–432, March 2013. [18] W. Ye, B. Yu, Y.-C. Ban, L. Liebmann, and D. Z. Pan. Standard cell layout regularity and pin access optimization considering middle-of-line. In GLSVLSI’15, pages 289-294. ACM, 2015. [19] Cho, M., Pan, D. Z., Xiang, H., and Puri, R. (2006, November). Wire density driven global routing for CMP variation and timing. In Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design (pp. 487-492). ACM. [20] P. Cremer, S. Hougardy, J. Schneider, J. Silvanus. Automatic Cell Layout in the 7nm Era. In Proceedings of the 2017 ACM on International Symposium on Physical Design. ACM, 2017. [21] A. Hasan, D. Sharma, S. Kalra, A. Sharma, and R. Saxena. A Standard cell architecture to deal with signal integrity issues in deep submicron technologies. https://www.design-reuse.com/articles/30429/standard-cell-architecture-signal-integrity-issues.html [22] Zhang, Hongbo, Martin DF Wong, and Kai-Yuan Chao. On process-aware 1-D standard cell design. In Proceedings of the 2010 Asia and South Pacific Design Automation Conference. IEEE Press, 2010. [23] M. Smayling. Gridded design rules: 1-D approach enables scaling of CMOS logic. Nanochip Technol. J., vol. 6, no. 2, pp. 33–37, 2008. [24] K. Vaidyanathan, S. H. Ng, D. Morris, N. Lafferty, L. Liebmann, M. Bender, W. Huang, K. Lai, L. Pileggi, and A. Strojwass. Design and manufacturability tradeoffs in unidirectional and bidirectional standard cell layouts in 14nm node. SPIE Advanced Lithography Conference, 2012 [25] Taylor, Brian, and Larry Pileggi. Exact combinatorial optimization methods for physical design of regular logic bricks. In Proceedings of the 44th annual Design Automation Conference. ACM, 2007. [26] A. Lu, H. J. Lu, E. J. Jang, Y. P. Lin, C. H. Hung, C. C. Chuang, and R. B. Lin. Simultaneous transistor pairing and placement for CMOS standard cells. DATE, pp. 1647-1652, Mar. 2015. [27] Lu, H. J., Jang, E. J., Lu, A., Zhang, Y. T., Chang, Y. H., Lin, C. H., and Lin, R. B. (2016, March). Practical ILP-based routing of standard cells. In Proceedings of the 2016 Conference on Design, Automation & Test in Europe (pp. 245-248). EDA Consortium. [28] N. Ryzhenko and S. Burns. Standard cell routing via boolean satisability. In DAC’12, pages 603-612, 2012. [29] Golden, Bruce, S. Raghavan, and Daliborka Stanojevi. The prize-collecting generalized minimum spanning tree problem. The prize-collecting generalized minimum spanning tree problem. 14.1 (2008): 69-93. [30] Y. Lin, B. Yu, B. Xu, and D. Z. Pan. Triple patterning aware detailed placement toward zero cross-row middle-of-line conflict. In Proc. ICCAD, 2015, pp. 396–403. [31] (2015). Nangate 15nm Open Cell Library [Online]. Available: http://www.nangate.com [32] Bulent Basaran. Optimal diffusion sharing in digital and analog CMOS layout. Carnegie Mellon University, Pittsburgh, PA, 1998. [33] CPLEX Optimizer[Online]. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/ [34] B. Yu, X. Xu, S. Roy, Y. Lin, J. Ou, and D. Z. Pan. Design for manufacturability and reliability in extreme-scaling VLSI. Science China Information Sciences, 59(6):1-23, 2016. [35] R. Merritt. 4 Views of the Silicon Roadmap. EE Times, 2017. http://www.eetimes.com/document.asp?doc_id=1331766
|