跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅業興
研究生(外文):Ye-Sing Luo
論文名稱:應用於無線功率傳輸的可適性交流-直流轉換器
論文名稱(外文):Adaptive AC-DC Converters for Wireless Power Transmission
指導教授:劉深淵
口試日期:2017-06-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:71
中文關鍵詞:可適性交流-直流轉換器
外文關鍵詞:Adaptive AC-DC Converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著物聯網、穿戴式裝置與可植入性醫療元件的發展,無線功率傳輸受到相當大的關注。在相關應用中,發射端所送出的能量,經由線圈/天線傳遞後,可在無線裝置上產生交流電壓。為了將交流電壓轉換為直流電壓,以提供裝置運作,交流-直流轉換器受到廣泛地使用。交流-直流轉換器的核心,常使用二極體連接的電晶體,或是使用比較器為基礎的主動式二極體。然而,二極體連接的電晶體與主動式二極體分別受限於電晶體的臨界電壓以及比較器的延遲開啟與關閉,使得交流-直流轉換器輸出電壓與功率轉換效率下降。因此,提高交流-直流轉換器的輸出電壓與功率轉換效率,是相當重要的議題。
本論文針對交流-直流轉換器,提出增加輸出電壓並提高功率轉換效率的方法。在第二章中,提出具有可適性臨界電壓補償的交流-直流轉換器。透過具背景校正能力的補償電壓,抵消交流-直流轉換器核心電晶體的臨界電壓,提高交流-直流轉換器的輸出電壓,改善功率轉換效率。第三章中,提出具有可適性延遲時間與脈波寬度的交流-直流轉換器。其採用延遲時間與脈波寬度皆可調整的脈波,對交流-直流轉換器內的功率電晶體進行開啟與關閉,增加交流-直流轉換器的輸出電壓,提高功率轉換效率。最後,總結於第四章。
For the development of the Internet of Things (IoT), wearable devices, and implantable medical devices, the wireless power transmission is receiving significant attention. In these applications, the external power from a transmitter is transmitted by the coils / antennas, and an AC voltage will be received in a wireless device. To convert the AC voltage into a DC one for the device working, an AC-DC converter is widely adopted. The cores of the AC-DC converters usually use a diode-connected MOS transistor or a comparator-based active diode. However, the diode-connected MOS transistor and the active diode suffer from the threshold voltage of a transistor and the turn on/off delay time of the comparator, respectively. Both of them reduce the output voltage and the power conversion efficiency (PCE) of the AC-DC converters. Hence, increasing the output voltage and the PCE are the crucial topics for the AC-DC converters.
This thesis presents two AC-DC converters to increase their output voltages and PCEs. In chapter 2, an AC-DC converter with adaptive threshold voltage compensation is presented. A compensation voltage is adjusted in the background to compensate the threshold voltage of the transistors. The output voltage and the PCE of the AC-DC converter are increased. In chapter 3, an AC-DC converter using an adaptive pulse controller is presented to receive the low input amplitude. The adaptive pulse controller adjusts the delay time and pulse-width of the pulses in the background to turn on/off the power switches. The output voltage is kept as high as possible, and the PCE of this AC-DC converter is enhanced. Finally, the conclusions are given in chapter 4.
1. Introduction 1
1.1 Motivation 1
1.2 Dissertation Organization 3


2. An AC-DC Converter With Adaptive Threshold Voltage Compensation 5
2.1 Introduction 5
2.2 Circuit Description 8
2.2.1 Voltage Distributor 12
2.2.2 Timing Controller and Oscillator 13
2.2.3 Clock Boosting Circuit and a Sample-and-Hold Circuit 16
2.2.4 Digital-to-Analog Converter 17
2.2.5 Settling Times of the Voltage Multiplier and ATVC 18
2.3 Experimental Results 20


3. An AC-DC Converter Using Adaptive Delay Time and Pulse-Width Control 27
3.1 Introduction 27
3.2 Circuit Description 30
3.2.1 Performance Analysis 36
3.2.2 Timing Generator 44
3.2.3 Controller 46
3.2.4 Digitally-Controlled Delay Line 48
3.2.5 Pulse Width Modulator 48
3.2.6 Power Switches 52
3.3 Experimental Results 54


4. Conclusion and Future Work 65
4.1 Conclusion 65
4.2 Future Work 66

Bibliography 67
[1]S. Guo and H. Lee, “An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1796–1804, June 2009.
[2]A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th ed., New York: Oxford University Press, 2004.
[3]J. F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique,” IEEE J. Solid-State Circuits, vol. SC-11, no. 3, pp. 374–378, June 1976.
[4]H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, “A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-µm technology,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 101–110, Jan. 2007.
[5]J. F. Dickson, “Voltage multiplier employing clock gated transistor chain,” U.S. patent 4,214,174, Jul. 22, 1980.
[6]G. Papotto, F. Carrara, and G. Palmisano, “A 90-nm CMOS threshold-compensated RF energy harvester,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 1985–1997, Sept. 2011.
[7]L. Xia, J. Cheng, N. E. Glover, and P. Chiang, “0.56 V, –20 dBm RF-powered, multi-node wireless body area network system-on-a-chip with harvesting-efficiency tracking loop,” IEEE J. Solid-State Circuits, vol. 49, no. 6, pp. 1345–1355, June 2014.
[8]T. Le, K. Mayaram, and T. Fiez, “Efficient far-field radio frequency energy harvesting for passively powered sensor networks,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1287–1302, May 2008.
[9]T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, “A 950-MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 35–41, Jan. 2006.
[10]Y. S. Luo and S. I. Liu, “A voltage multiplier with adaptive threshold voltage compensation,” accepted by IEEE Journal of Solid-State Circuits.
[11]Y. S. Luo and S. I. Liu, “A 0.8V 13.56 MHz 88.7%-PCE voltage doubling rectifier using adaptive delay time and pulse-width control,” submitted to IEEE Trans. Circuits Syst. I, Reg. Papers.
[12]T. W. Wang, Y. L. Tsai, C. R. Lee, F. L. Hung, and T. H. Lin, “A 0.5-V sub-mW energy-efficient receiver in 0.18-μm CMOS for IoT applications,” IEEE Int. SoC Design Conf. (ISOCC), pp. 157-158, Oct. 2016.
[13]Z. Hameed and K. Moez, “Hybrid forward and backward threshold-compensated RF-DC power converter for RF energy harvesting,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 4, no. 3, pp. 335–343, Sep. 2014.
[14]C. Y. Wu, X. H. Qian, M. S. Cheng, Y. A. Liang, and W. M. Chen, “A 13.56 MHz 40 mW CMOS high-efficiency inductive link power supply utilizing on-chip delay-compensated voltage doubler rectifier and multiple LDOs for implantable medical devices,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2397–2407, Nov. 2014.
[15]Y. Lu, H. Dai, M. Huang, M. K. Law, S. W. Sin, S. P. U, and R. P. Martins, “A wide input range dual-path CMOS rectifier for RF energy harvesting,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 2, pp. 166–170, Feb. 2017.
[16]F. Kocer and M. P. Flynn, “A new transponder architecture with on-chip ADC for long-range telemetry applications,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1142–1148, May 2006.
[17]Y. J. Kim, H. S. Bhamra, J. Joseph, and P. P. Irazoqui, “An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 11, pp. 1028–1032, Nov. 2015.
[18]C. J. Li and T. C. Lee, “2.4-GHz high-efficiency adaptive power harvester,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 2, pp. 434–438, Feb. 2014.
[19]S. B. Lee, H. M. Lee, M. Kiani, U. M. Jow, and M. Ghovanloo, “An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 120–121, Feb. 2010.
[20]H. M. Lee and M. Ghovanloo, “An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1749–1760, Aug. 2011.
[21]C. Huang, T. Kawajiri, and H. Ishikuro, “A near-optimum 13.56 MHz CMOS active rectifier with circuit-delay real-time calibrations for high-current biomedical implants,” IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1797–1809, Aug. 2016.
[22]P. Favrat, P. Deval, and M. J. Declercq, “A high-efficiency CMOS voltage doubler,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 410–416, Mar. 1998.
[23]J. Kim, P. K. T. Mok, and C. Kim, “A 0.15 V input energy harvesting charge pump with dynamic body biasing and adaptive dead-time for efficiency improvement,” IEEE J. Solid-State Circuits, vol. 50, no. 2, pp. 414–425, Feb. 2015.
[24]B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[25]B. Zhai, S. Pant, L. Nazhandali, S. Hanson, J. Olson, A. Reeves, M. Minuth, R. Helfand, T. Austin, D. Sylvester, and D. Blaauw, “Energy-efficient subthreshold processor design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 8, pp. 1127–1137, Aug. 2009.
[26]P. Li and R. Bashirullah, “A wireless power interface for rechargeable battery operated medical implants,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 10, pp. 912–916, Oct. 2007.
[27]V. Talla and J. R. Smith, “Design and analysis of a high bandwidth rectifying regulator with PWM and PFM modes,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 12, pp. 1121–1125, Dec. 2016.
[28]R. J. Yang and S. I. Liu, “A 40–550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 361-373, Feb. 2007.
[29]C. L. Chen, K. H. Chen, and S. I. Liu, “Efficiency-enhanced CMOS rectifier for wireless telemetry,” IEE Electronics Letters, vol. 43, pp. 976-978, Aug. 2007.
[30]L. Cheng, W. H. Ki, Y. Lu, and T. S. Yim, “Adaptive on/off delay-compensated active rectifiers for wireless power transfer systems,” IEEE Journal of Solid-State Circuits, vol. 51, no. 3, pp. 712-723, Mar. 2016.
[31]Y. Lu, X. Li, W. H. Ki, C. Y. Tsui, and C. P. Yue, “A 13.56MHz fully integrated 1X/2X active rectifier with compensated bias current for inductively powered devices,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 66–67, Feb. 2013.
[32]Y. Lu and W. H. Ki, “A 13.56 MHz CMOS active rectifier with switched-offset and compensated biasing for biomedical wireless power transfer systems,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 3, pp. 334–344, June 2014.
[33]H. K. Cha, W. T. Park, and M. Je, “A CMOS rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 7, pp. 409–413, July 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top