|
[1]S. Guo and H. Lee, “An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1796–1804, June 2009. [2]A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th ed., New York: Oxford University Press, 2004. [3]J. F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique,” IEEE J. Solid-State Circuits, vol. SC-11, no. 3, pp. 374–378, June 1976. [4]H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, “A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-µm technology,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 101–110, Jan. 2007. [5]J. F. Dickson, “Voltage multiplier employing clock gated transistor chain,” U.S. patent 4,214,174, Jul. 22, 1980. [6]G. Papotto, F. Carrara, and G. Palmisano, “A 90-nm CMOS threshold-compensated RF energy harvester,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 1985–1997, Sept. 2011. [7]L. Xia, J. Cheng, N. E. Glover, and P. Chiang, “0.56 V, –20 dBm RF-powered, multi-node wireless body area network system-on-a-chip with harvesting-efficiency tracking loop,” IEEE J. Solid-State Circuits, vol. 49, no. 6, pp. 1345–1355, June 2014. [8]T. Le, K. Mayaram, and T. Fiez, “Efficient far-field radio frequency energy harvesting for passively powered sensor networks,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1287–1302, May 2008. [9]T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, “A 950-MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 35–41, Jan. 2006. [10]Y. S. Luo and S. I. Liu, “A voltage multiplier with adaptive threshold voltage compensation,” accepted by IEEE Journal of Solid-State Circuits. [11]Y. S. Luo and S. I. Liu, “A 0.8V 13.56 MHz 88.7%-PCE voltage doubling rectifier using adaptive delay time and pulse-width control,” submitted to IEEE Trans. Circuits Syst. I, Reg. Papers. [12]T. W. Wang, Y. L. Tsai, C. R. Lee, F. L. Hung, and T. H. Lin, “A 0.5-V sub-mW energy-efficient receiver in 0.18-μm CMOS for IoT applications,” IEEE Int. SoC Design Conf. (ISOCC), pp. 157-158, Oct. 2016. [13]Z. Hameed and K. Moez, “Hybrid forward and backward threshold-compensated RF-DC power converter for RF energy harvesting,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 4, no. 3, pp. 335–343, Sep. 2014. [14]C. Y. Wu, X. H. Qian, M. S. Cheng, Y. A. Liang, and W. M. Chen, “A 13.56 MHz 40 mW CMOS high-efficiency inductive link power supply utilizing on-chip delay-compensated voltage doubler rectifier and multiple LDOs for implantable medical devices,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2397–2407, Nov. 2014. [15]Y. Lu, H. Dai, M. Huang, M. K. Law, S. W. Sin, S. P. U, and R. P. Martins, “A wide input range dual-path CMOS rectifier for RF energy harvesting,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 2, pp. 166–170, Feb. 2017. [16]F. Kocer and M. P. Flynn, “A new transponder architecture with on-chip ADC for long-range telemetry applications,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1142–1148, May 2006. [17]Y. J. Kim, H. S. Bhamra, J. Joseph, and P. P. Irazoqui, “An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 11, pp. 1028–1032, Nov. 2015. [18]C. J. Li and T. C. Lee, “2.4-GHz high-efficiency adaptive power harvester,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 2, pp. 434–438, Feb. 2014. [19]S. B. Lee, H. M. Lee, M. Kiani, U. M. Jow, and M. Ghovanloo, “An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 120–121, Feb. 2010. [20]H. M. Lee and M. Ghovanloo, “An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1749–1760, Aug. 2011. [21]C. Huang, T. Kawajiri, and H. Ishikuro, “A near-optimum 13.56 MHz CMOS active rectifier with circuit-delay real-time calibrations for high-current biomedical implants,” IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1797–1809, Aug. 2016. [22]P. Favrat, P. Deval, and M. J. Declercq, “A high-efficiency CMOS voltage doubler,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 410–416, Mar. 1998. [23]J. Kim, P. K. T. Mok, and C. Kim, “A 0.15 V input energy harvesting charge pump with dynamic body biasing and adaptive dead-time for efficiency improvement,” IEEE J. Solid-State Circuits, vol. 50, no. 2, pp. 414–425, Feb. 2015. [24]B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001. [25]B. Zhai, S. Pant, L. Nazhandali, S. Hanson, J. Olson, A. Reeves, M. Minuth, R. Helfand, T. Austin, D. Sylvester, and D. Blaauw, “Energy-efficient subthreshold processor design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 8, pp. 1127–1137, Aug. 2009. [26]P. Li and R. Bashirullah, “A wireless power interface for rechargeable battery operated medical implants,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 10, pp. 912–916, Oct. 2007. [27]V. Talla and J. R. Smith, “Design and analysis of a high bandwidth rectifying regulator with PWM and PFM modes,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 12, pp. 1121–1125, Dec. 2016. [28]R. J. Yang and S. I. Liu, “A 40–550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 361-373, Feb. 2007. [29]C. L. Chen, K. H. Chen, and S. I. Liu, “Efficiency-enhanced CMOS rectifier for wireless telemetry,” IEE Electronics Letters, vol. 43, pp. 976-978, Aug. 2007. [30]L. Cheng, W. H. Ki, Y. Lu, and T. S. Yim, “Adaptive on/off delay-compensated active rectifiers for wireless power transfer systems,” IEEE Journal of Solid-State Circuits, vol. 51, no. 3, pp. 712-723, Mar. 2016. [31]Y. Lu, X. Li, W. H. Ki, C. Y. Tsui, and C. P. Yue, “A 13.56MHz fully integrated 1X/2X active rectifier with compensated bias current for inductively powered devices,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 66–67, Feb. 2013. [32]Y. Lu and W. H. Ki, “A 13.56 MHz CMOS active rectifier with switched-offset and compensated biasing for biomedical wireless power transfer systems,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 3, pp. 334–344, June 2014. [33]H. K. Cha, W. T. Park, and M. Je, “A CMOS rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 7, pp. 409–413, July 2012.
|