(54.236.58.220) 您好!臺灣時間:2021/03/05 06:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林子傑
研究生(外文):Zi-Jie Lin
論文名稱:開發一可攜式模組化微型氣相層析儀應用於愷他命氣體特徵標誌偵測
論文名稱(外文):Development of Portable Modulized Micro Gas Chromatography for Detection of Ketamine Gas Marker
指導教授:田維誠
指導教授(外文):Wei-Cheng Tian
口試日期:2017-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:愷他命K菸微型氣相層析儀嵌入式系統Arduino物聯網
外文關鍵詞:KetamineK-cigMicro Gas ChromatographyEmbedded SystemArduinoInternet of Things
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
  根據衛生福利部統計,愷他命(Ketamine)長年居於青少年濫用藥物之首,長期使用會對腦神經、呼吸系統、泌尿系統帶來摧毀性的結果。而在台灣,摻在香菸中燃燒吸食是最常見的使用方式,俗稱K菸;其二手煙會造成環境汙染及非吸食者的健康危害。但目前國內並沒有偵測愷他命氣體之儀器,警察機關僅能以氣味作為評斷依據,故本研究希望開發一可攜式愷他命氣體分析儀,以作為查緝及取締之初步的有力證據。
  本研究結合市售元件與微機電(MEMS)元件,開發出一可攜型模組化微型氣相層析儀並將其應用於愷他命氣體特徵標誌之偵測。所開發之原型儀器其重量約1.7 kg,體積為18.6×18.1×13.2 cm,以開源的Arduino及其軟硬體平台為基礎,取代過去使用電腦作為系統的核心。本儀器以觸控螢幕作為使用者介面,並搭配藍牙及WiFi模組作為物聯網之解決方案。本研究將不同功能之部分模組化,除了可避免彼此互相干擾,亦有益於未來商品化,且可在不同的情況下更換或加裝不同的元件或模組,使儀器具有高度的彈性。本研究亦提出了微型氣相層析儀系統化的製作方法,電路模組設計為Arduino相容擴充板(Shield)之形式,並作為各個元件的讀取及控制系統;流道模組使用傳統不銹鋼圓柱型前濃縮管、微層析晶片及光離子化偵測器作為層析之關鍵元件,量測時使用一般空氣作為載流氣體,並用分子篩與活性碳過濾其水氣及有機物,因此無需使用傳統氣體鋼瓶。
  於氣相層析標準量測上,本儀器成功分離並偵測3種揮發性有機氣體(Volatile Organic Compounds, VOCs)。於愷他命氣體特徵標誌(Marker)之偵測上,本研究定義出愷他命熱裂解後之主成分為2-氯苯甲醛(2-Chlorobenzaldehyde),並可利用微型氣相層析儀成功採樣並偵測該化合物,而在1 L採樣體積之條件下,偵測極限可達到7.54 ppb。本儀器有分析迅速、體積小、易於攜帶、再現性佳等優點。
  According to statistics data from the Ministry of Health and Welfare in Taiwan, Ketamine had been the most popular drug among teenagers for many years. Long-term abuse of ketamine would cause permanent damage to human’s brain, respiratory system, and urinary system. In Taiwan, smoking cigarettes with ketamine, known as “K-cig”, was the most common method of ketamine use. The secondhand smoke also led to the environmental pollution and health hazards of non-smokers. However, in Taiwan there was no instrument for detecting ketamine, so the purpose of this thesis was to develop a portable ketamine gas analyzer to help the police to identify ketamine drugs objectively.
  This research combined the commercial and MEMS devices to develop a portable modulized micro gas chromatography (μGC) for detection of ketamine gas marker. The prototype weighed approximately 1.7 kg, and with a size of 18.6×18.1×13.2 cm. Our μGC was based on open-source hardware and software platform of Arduino rather than the conventional way of using computer. This instrument utilized bluetooth and WiFi as the communication solutions of Internet of Things (IoT), and used a touch screen as user interface. In this research, different functions of components were modulized to avoid cross physical interference and to provide the serviceability for future commercialization. This instrument was highly flexible, because we could change or add different modules in different situations and contexts. This research suggested a systematic method to build the μGC. The electronic modules were designed as Arduino compatible shields and served as a readout and control system for every components. In addition, the conventional preconcentrator (PCT), the MEMS-based separation column (SC), and a commercial photoionization detector (PID) were employed as a critical components in the fluidic modules. This μGC used the ambient air scrubbed by molecular sieves and active carbon as the carrier gas when measuring, so it required no gas cylinder.
  In this research, vapor mixtures of three compounds were successfully separated and identified by our μGC. Moreover, 2-chlorobenzaldehyde (2-CBA) was defined as the maker of ketamine after pyrolysis. The detection limit (LOD) of our μGC in 1 L air sampling condition for 2-CBA was approximately 7.54 ppb. It demonstrated that our μGC has the features of highly portability, rapid analysis, and good repeatability.
口試委員審定書 I
誌謝 II
中文摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XIII
第一章:緒論 1
1.1 研究動機 1
1.2 研究架構 3
1.3 愷他命及檢測方法介紹 4
1.4 氣相層析系統及其元件介紹 8
1.4.1 氣相層析系統簡介 8
1.4.2 前濃縮管原理及簡介 10
1.4.3 分離管柱原理及簡介 13
1.4.4 氣體偵測器原理及簡介 16
1.5 氣相層析系統文獻回顧 17
1.6 論文架構 27
第二章:系統硬體及模組介紹 28
2.1 嵌入式系統 28
2.1.1 Arduino開發板 28
2.1.2 類比-數位轉換器 31
2.1.3 傳輸介面簡介 33
2.2 通訊模組簡介 37
2.2.1 藍芽模組 37
2.2.2 WiFi模組 39
2.3 觸控螢幕模組簡介 40
第三章:可攜式模組化微型氣相層析儀之設計與製作 42
3.1 流道模組設計與製作 42
3.1.1 前濃縮管 44
3.1.2 分離管柱 45
3.1.3 氣體偵測器 47
3.2 電路模組設計與製作 50
3.2.1 溫度讀取電路 50
3.2.2 繼電器控制電路 52
3.2.3 訊號處理電路 53
3.3 印刷電路板設計與製作 55
第四章:實驗架構與方法 58
4.1 以標準氣體注入微型氣相層析儀 58
4.2 愷他命特徵標誌量測 60
第五章:實驗結果與討論 63
5.1 微型氣相層析儀之功能測試 63
5.1.1 不同輔助氣流流速之探討 63
5.1.2 不同載流氣流流速之探討 64
5.1.3 不同升溫條件之探討 65
5.1.4 不同採樣體積之探討 66
5.1.5 不同樣品濃度之探討 67
5.2 愷他命氣體之特徵標誌量測 69
5.2.1 愷他命氣體之特徵標誌定義 69
5.2.2 愷他命氣體之特徵標誌校正曲線建立 71
第六章:結論與未來展望 77
6.1 結論 77
6.2 未來展望 77
參考資料 80
[1]衛生福利部, “藥物濫用案件暨檢驗統計資料【一○五年報分析】”, 2017.
[2]K他命惡臭受害者聯盟, “立委應重視的法律漏洞:K他命菸污染”, 2016.
[3]社團法人台灣醫事檢驗學會, “談毒品 尿液檢驗”, 2010.
[4]衛生福利部, “愷他命濫用之臨床評估與處置建議”, 2012.
[5]國立臺灣科學教育館, “科學研習月刊”, no.56-04, 2017.
[6]Dräger DrugTest® 5000
https://www.draeger.com/en-us_us/Alcohol-And-Drug-Detection/Products/Breath-Alcohol-and-Drug-Testing/Drug-Testing-Devices/DrugTest-5000
[7]HazMatID Elite - Smiths Detection
https://www.smithsdetection.com/index.php?option=com_k2&view=item&id=102&Itemid=101#.WWIE3YiGM2w
[8]TruNarc™ Handheld Narcotics Analyzer - Thermo Fisher Scientific
https://www.thermofisher.com/order/catalog/product/TRUNARC
[9]Torion T-9 - Torion.com
http://torion.com/products/torion.html
[10]蔡蘊明, “氣相層析儀簡介,” Available: http://www.ch.ntu.edu.tw/~chemedu3/Lecture/GC.htm.
[11]T.H. Tzeng, C.Y. Kuo, S.Y. Wang, P.K. Huang, Y.M. Huang, W.C Hsieh, Y.J. Huang, P.H. Kuo, S.A. Yu, S.C. Lee, Yufeng Jane Tseng, W.C. Tian, and S.S. Lu, “A Portable Micro Gas Chromatography System for Lung Cancer Associated Volatile Organic Compound Detection,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1, Jan. 2016.
[12]S. B. Bertman, M. P. Buhr, and J. M. Roberts, “Automated cryogenic trapping technique for capillary GC analysis of atmospheric trace compounds requiring no expendable cryogens: Application to the measurement of organic nitrates,” Anal. Chem., vol. 65, pp. 2944-2946, 1993.
[13]D. Helmig, and J. P. Greenberg, “Automated in situ gas chromatographic-mass spectrometric analysis of ppt level volatile organic trace gases using multistage solid-adsorbent trapping,” Journal of Chromatography A, vol. 677, pp. 123-132, 1994.
[14]Gorecki, T., and Pawliszyn, J., “Sample Introduction Approaches for Solid Phase Microextraction/Rapid GC,” Anal. Chem., vol. 67, pp. 3265-3274, 1995.
[15]林彥宏, “VOC前濃縮與預警系統之建構”, 國立中央大學化學研究所碩士論文, 2000.
[16]J. Pawliszyn, “Handbook of Solid Phase Microextraction”, Chemical Industry Press, 2009.
[17]Y. -S. Lin, C. -Y. Kuo, W. -C. Tian, T. -H. Wu, H. -J Sheen, H. -Y Kuo, and C. -J. Lu “Batch fabrication of micro preconcentrator with thin film microheater using Tollen''s reaction,” Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on.
[18]C. -Y. Kuo, P. -S. Chen, K. -J Chiu, C. -J. Lu, and W. -C. Tian, “Development of new micro gas preconcentrator using novel electroless gold plating process,” Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015 Transducers - 2015 18th International Conference on.
[19]簡日昇, “微型氣相層析儀”, 國立台灣師範大學化學研究所博士論文, 2013.
[20]Harvey, D., “GC Columns”, Available: http://community.asdlib.org/imageandvideoexchangeforum/2011/06/21/gc-columns/.
[21]S. C. Terry, J. H. Jerman, and J. B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” Electron Devices, IEEE Transactions on, vol. 26, pp. 1880-1886, 1979.
[22]S. Reidy, D. George, M. Agah, and R. Sacks, “Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors,” Analytical chemistry, 79(7), 2911-2917, 2007.
[23]H. Shakeel, G. Rice, and M. Agah, “First reconfigurable MEMS separation columns for micro gas chromatography,” Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012.
[24]Shakeel, Hamza, and Masoud Agah, “High-performance multicapillary gas separation columns with MPG stationary phases,” Sensors, IEEE, 2011.
[25]H. Zareie, B. Alfeeli, M .A. Zareian-Jahromi, and M. Agah, “Self-patterned gold electroplated multicapillary separation columns,” Sensors, IEEE, 1526-1529, 2010.
[26]Zareian-Jahromi, Mohammad Amin, and Masoud Agah, “Microfabricated gas chromatography columns with monolayer-protected gold stationary phases,” Microelectromechanical Systems, Journal of 19.2 (2010): 294-304, 2010.
[27]Narayanan, Shree, Bassam Alfeeli, and Masoud Agah. "Two-port static coated micro gas chromatography column with an embedded thermal conductivity detector." Sensors Journal, IEEE, 12.6: 1893-1900, 2012.
[28]Robert L. Grob and Eugene F. Barry, “Modern Practice of Gas Chromatography, 4th Edition,” John Wiley & Sons, 2004.
[29]“The PID Handbook: Theory and Applications of Direct-Reading Photoionization Detectors,” RAE Systems by Honeywell, 2014.
[30]J. E. Lovelock, “The electron capture detector,” Journal of Chromatography A., 99: 3, 1974.
[31]Yamazoe, Noboru, Go Sakai, and Kengo Shimanoe, “Oxide semiconductor gas sensors.” Catalysis Surveys from Asia, 7.1: 63-75, 2003.
[32]De Hoffmann, Edmond, and Vincent Stroobant, “Mass spectrometry: principles and applications,” John Wiley & Sons, 2007.
[33]C. -J. Lu, W. H. Steinecker, W. -C. Tian, M. C. Oborny, J. M. Nichols, M. Agah, et al., “First-generation hybrid MEMS gas chromatograph,” Lab on a Chip, vol. 5, pp. 1123-1131, 2005.
[34]J. Ji, C. Deng, W. Shen, and X. Zhang, “Field analysis of benzene, toluene, ethylbenzene and xylene in water by portable gas chromatography–microflame ionization detector combined with headspace solid-phase microextraction,” Talanta, vol. 69, pp. 894-899, 6/15/ 2006.
[35]E. T. Zellers, S. Reidy, R. A. Veeneman, R. Gordenker, W. H. Steinecker, G. R. Lambertus, et al., "An integrated micro-analytical system for complex vapor mixtures," in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International, pp. 1491-1496, 2007.
[36]Sun Kyu Kim, Hungwei Chang, and Edward T. Zellers, “Microfabricated Gas Chromatograph for the Selective Determination of Trichloroethylene Vapor at Sub-Parts-Per-Billion Concentrations in Complex Mixtures,” Anal. Chem., 83 (18), pp 7198–7206, 2011.
[37]R. -S. Jian, Y. -S. Huang, S. -L. Lai, L. -Y. Sung, and C. -J. Lu, "Compact instrumentation of a μ-GC for real time analysis of sub-ppb VOC mixtures," Microchemical Journal, vol. 108, pp. 161-167, 2013.
[38]Muhammad Akbar, Michael Restaino, and Masoud Agah, “Chip-scale gas chromatography: From injection through detection,” Microsystems & Nanoengineering 1, Article number: 15039, 2015.
[39]Yutao Qin, Yogesh B, and Gianchandani, “A fully electronic microfabricated gas chromatograph with complementary capacitive detectors for indoor pollutants,” Microsystems & Nanoengineering 2, Article number: 15049, 2016.
[40]Hu, Jie-Bi, et al., “Automated system for extraction and instantaneous analysis of millimeter-sized samples,” RSC Advances 4.21 (2014): 10693-10701.
[41]Busquets, Javier, et al. “Low-cost AUV based on Arduino open source microcontroller board for oceanographic research applications in a collaborative long term deployment missions and suitable for combining with an USV as autonomous automatic recharging platform,” Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES. IEEE, 2012.
[42]Yusoff, Mohd Ashiq Kamaril, Reza Ezuan Samin, and Babul Salam Kader Ibrahim, “Wireless mobile robotic arm,” Procedia Engineering 41 (2012): 1072-1078.
[43]Rao, Aravinda S., et al., “Design of low-cost autonomous water quality monitoring system,” Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on. IEEE, 2013.
[44]Kumar, and Shiu, “Ubiquitous smart home system using android application,” arXiv preprint arXiv:1402.2114 (2014).
[45]Fang, Yi-yuan, and Xue-jun Chen, “Design and simulation of UART serial communication module based on VHDL.” Intelligent Systems and Applications (ISA), 2011 3rd International Workshop on. IEEE, 2011.
[46]“WiMAX 與Wi-Fi 無線寬頻通訊現況分析”, 台灣區電機電子工業同業公會電子報, 2009.
[47]Lee, Jin-Shyan, Yu-Wei Su, and Chung-Chou Shen, “A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE. IEEE, 2007.
[48]Haartsen, Jaap. “Bluetooth-The universal radio interface for ad hoc, wireless connectivity.” Ericsson review 3.1 (1998): 110-117.
[49]Gast, Matthew. “802.11 wireless networks: the definitive guide, second edition” O''Reilly Media, Inc.”, 2009.
[50]黃柏愷, “整合揮發性有機化合物氣體微感測器與改良式攜帶型氣相層析儀之研究”, 國立臺灣大學電機資訊學院電子工程學研究所碩士論文, 2015.
[51]C. Jung Lu, and E. T. Zellers, “Multi-adsorbent preconcentration/focusing module for portable-GC/microsensor-array analysis of complex vapor mixtures,” Analyst, vol. 127, pp. 1061-1068, 2002.
[52]C.-J. Lu, and E. T. Zellers, “A Dual-Adsorbent Preconcentrator for a Portable Indoor-VOC Microsensor System,” Analytical Chemistry, vol. 73, pp. 3449-3457, 2001.
[53]Chen, Bo-Xun, et al. “A multidimensional micro gas chromatograph employing a parallel separation multi-column chip and stop-flow μGC× μGCs configuration.” Lab on a Chip 13.7 (2013): 1333-1341.
[54]Reidy, Shaelah, et al. “High-performance, static-coated silicon microfabricated columns for gas chromatography.” Analytical Chemistry 78.8 (2006): 2623-2630.
[55]Serrano, Gustavo, Shaelah M. Reidy, and Edward T. Zellers. “Assessing the reliability of wall-coated microfabricated gas chromatographic separation columns.” Sensors and Actuators B: Chemical 141.1 (2009): 217-226.
[56]Ali, Syed, et al. “MEMS-based semi-packed gas chromatography columns.” Sensors and Actuators B: Chemical 141.1 (2009): 309-315.
[57]駱玠錞, “高靈敏光激發奈米結構與常壓噴射式電漿處理之氧化鋅常溫氣體感測器”, 國立台灣大學電機資訊學院電子工程學研究所碩士論文, 2015.
[58]張正義, “以奈米金單層膜保護團簇塗佈於堆疊式電極結構之揮發性有機化合物氣體感測器”, 國立台灣大學電機資訊學院電子工程學研究所碩士論文, 2013.
[59]EQUIPCO, “Introduction to Photoionization”, Available: http://www.equipcoservices.com/support/tutorials/introduction-to-photoionization/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔