跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江益宏
研究生(外文):Yi-Hong Jiang
論文名稱:氮化鋁鎵/氮化鎵高功率與射頻高電子遷移率電晶體之製作與分析
論文名稱(外文):Fabrication and Analysis of AlGaN/GaN High Power Density and RF HEMTs
指導教授:吳肇欣
指導教授(外文):Chao-Hsin Wu
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:氮化鋁鎵/氮化鎵異質接面結構高電子遷移率電晶體閘極掘入大面積元件射頻元件小訊號模型
外文關鍵詞:AlGaN/GaN heterostructureHEMTsgate recesslarge-area deviceRF devicesmall-signal model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中,我們採用氮化鋁鎵/氮化鎵異質接面結構製作元件,利用氮化鎵優異的特性如寬能隙、高崩潰電壓、高電子遷移率與高頻率響應等來製作高功率與射頻元件並分析。
本論文的第一部分為增強式元件的製作,利用感應藕合式電漿離子蝕刻機台移除閘極區域的氮化鋁鎵障壁層以空乏二維電子氣,並成長一層氧化鋁抑制閘極漏流,成功使臨界電壓從-5.27 V增加到0.47 V,獲得了增強式元件,並利用稀釋的氫氧化鉀做閘極掘入後的表面修復,藉由通道片電阻、遲滯曲線、電子遷移率與介面能態密度改善證實了此方法確實能提升閘極掘入後的元件特性。
第二部份則是藉由氮化鎵可操作於高壓與高溫環境的特性,利用大面積的元件與多指結構達成高電流元件。在此章我們製作了連接式與跨接式閘極結構的元件,元件的最大電流達到7.1安培,並探討閘極寬度與指數對於元件特性的影響。
最後是氮化鎵高頻元件的製作與分析,利用網路分析儀進行S參數的量測,利用ADS軟體建立元件的小訊號模型,模擬出元件參數後計算截止頻率與最大震盪頻率。
In this thesis, we take advantage of the superior properties of GaN, such as wide bandgap, high breakdown voltage, high electron mobility and high frequency response to fabricate the high power and RF devices with AlGaN/GaN heterostructures.
The first part is the fabrication and analysis of enhancement-mode devices. We use the ICP-RIE to remove the AlGaN barrier layer under the gate in order to deplete the 2DEG. Al2O3 is deposited to suppress the gate leakage. The threshold voltage has a positive shift from -5.27 V to 0.47 V which means that the e-mode device is successfully achieved. We also use the diluted KOH solution to recover the recessed surface after the recess etch. The improvement of channel sheet resistivity, hysteresis, mobility and density of states shows a convincing evidence that the KOH passivation is effective to recover the recessed region.
In the third part, owing to the capability of high-temperature and high-voltage operation of GaN devices, we design the large-area and multi-finger devices to achieve high current. The devices are designed with inter-connected and connecting gate structure and the max current results in 7.4 A. Then we investigate the impact of the layout design including the gate width and the number of fingers.
The last part is the fabrication and analysis of GaN RF device. We build the small-signal model by ADS and simulate each component in the circuit to calculate the cut-off frequency and maximum frequency of oscillation.
目錄
口試委員審定書 i
誌謝 ii
中文摘要 iv
Abstract v
目錄 vii
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 氮化鎵材料介紹 1
1.2 氮化鋁鎵/氮化鎵異質接面結構 5
1.3 論文概述 7
第二章 增強型氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體之製作與分析 8
2.1 實驗介紹 8
2.2 增強型氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體製作 9
2.2.1 磊晶結構 9
2.2.2 元件製作流程 11
2.3 電晶體直流電性與金氧半接面之分析與比較 16
2.3.1 閘極掘入製程對元件特性之比較 16
2.3.2 氫氧化鉀對閘極掘入元件之影響 20
第三章 氮化鋁鎵/氮化鎵大面積高電流高電子遷移率電晶體之製作與特性分析 28
3.1 光罩布局:線寬與結構設計 28
3.2 氮化鋁鎵/氮化鎵大面積高電流高電子遷移率電晶體元件製作流程 31
3.3 元件製程之問題 36
3.4 氮化鋁鎵/氮化鎵大面積高電流高電子遷移率電晶體之特性分析 39
3.4.1 大面積元件特性 39
3.4.2 不同閘極指數與寬度之元件特性與分析 42
第四章 氮化鋁鎵/氮化鎵高電子遷移率電晶體之高頻特性與小訊號模型分析 49
4.1 氮化鋁鎵/氮化鎵射頻高電子遷移率電晶體製作 49
4.1.1 磊晶結構 49
4.1.2 元件製作流程 51
4.2 直流與高頻訊號量測分析 54
4.2.1 直流電性分析 54
4.2.2 高頻量測架設與小訊號分析 56
第五章 結論與未來展望 68
參考文獻 69
參考文獻
[1]U. K. Mishra, L. Shen, T. E. Kazior, et al., “GaN-Based RF power devices and amplifiers,” Proc. IEEE, vol. 96, no. 2, pp. 287–305, Feb. 2008.
[2]Alex Lidow, “Can Gallium Nitride Replace Silicon?” Power Electronics Europe, issue 2, 2010.
[3]Carl Blake, “The Next Phase of Power Conversion - Size Reduction,” Power Sources Manufacturers Association (PSMA), Q3, 2011.
[4]IHS Technology, “Market Forecasts For Silicon Carbide & Gallium Nitride Power Semiconductors – 2016.”
[5]Stephen Oliver, “Optimize a Power Scheme for these Transient Times,” ElectronicDesign, Sep 30, 2014.
[6]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, ”Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp.3222-3233, Mar. 1999.
[7] W. Huang, Z. Li, T. P. Chow, Y. Niiyama, T. Nomura, and S. Yoshida,“Enhancement-mode gan hybrid MOS-HEMTs with ron,sp of 20 mω –cm2,” in Proc. 20th Int. Symp. Power Semiconductor Devices ICs, May 2008, pp. 295–298.
[8]S. Huang, Q. et al., “High-temperature low-damage gate recess technique and ozone-assisted ALD-grown Al2O3 gate dielectric for high-performance normally-off GaN MIS-HEMTs,” in Proc. IEEE Int. Electron Devices Meeting, Washington, DC, Dec. 2014, pp. 17.4.1–17.4.4
[9]Lei Ma, K. Fareen Adeni, Chang Zeng, Yawei Jin, Krishnanshu Dandu, Yoganand Saripalli, Mark Johnson, and Doug Barlage. “Comparison of Different GaN Etching Techniques,” CS MANTECH Conference, April 24-27, 2006.
[10]Anwar Jarndal, “AlGaN/GaN HEMTs on SiC and Si Substrates:A Review from the Small-Signal-Modeling’sPerspective” International Journal of RF and Microwave Computer-Aided Engineering, June 2013
[11]A. Sarua, H. Ji, M. Kuball, M.J. Uren, T. Martin, K.P. Hilton, and R.S. Balmer, “Integrated micro-Raman/Infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structures,” IEEE Trans. Electron Devices, vol. 53, no. 10, 2438-2447, October 2006
[12]C.-F. Huang, “Derivation of fT And fMAX In Bipolar And MOSFETs,” 2004
[13]Zhang Wen, Yuehang Xu, Changsi Wang, Xiaodong Zhao and Ruimin Xu, “An efficient parameter extraction method for GaN HEMTsmall-signal equivalent circuit model,” Int. J. Numer. Model, 2017 ; 30: e2127
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊