跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張景翔
研究生(外文):Ching-Hsiang Chang
論文名稱:非晶態氧化銦鋅鎵電子元件與技術之研究
論文名稱(外文):Development of Device and Processing Technologies For Amorphous In-Ga-Zn-O Based Electronic Devices
指導教授:吳忠幟
口試日期:2017-07-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:83
中文關鍵詞:非晶態氧化銦鋅鎵六甲基二矽氧烷閘極介電層保護層薄膜電晶體導電高分子二極體軟性透明
外文關鍵詞:a-IGZOHMDSOgate insulatorspassivation layersTFTsPEDOT:PSSdiodesjunctionsflexibletransparent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在低溫製程及軟性薄膜電子元件的科技發展上,透明金屬氧化物半導體薄膜元件備受關注。由於其物理本質特性,金屬氧化物半導體在非晶態下仍可保持高載子遷移率,使其可在低溫(甚至室溫)環境下製程。同時,其在可見光波段具有高穿透性,可應用於透明電子元件或提升顯示器的開口率。除了元件中的主動層外,找到適當的可撓曲介電材質是實現軟性電子的重要關鍵。如:TFT中需要高品質的介電層作為閘極絕緣層(gate insulator);為了延長元件的使用壽命,所使用的阻擋水氣、氧氣的保護層(passivation layer)也是不可或缺的。另外,由於軟性可撓曲基板較無法耐高溫,因此如何在低溫下成長出高品質的介電薄膜也是軟性電子發展的重要課題。
在本論文中,我們探討在ICP-CVD系統中,以前驅物Hexamethyldisiloxane (HMDSO)與O2在低溫下(接近室溫)成長出高品質的介電有機無機複合薄膜。藉由調整HMDSO、O2氣體比例、CVD功率等參數,可控制薄膜本身特性偏向較矽氧樹脂(有機)或是較二氧化矽(無機)。此複合薄膜在可見光波段展現出高穿透性且具有高崩潰電場,可達5.1 MV/cm,並有與高溫350℃下 PECVD所成長出的SiOx同等級的低漏電流。同時,有機-無機複合薄膜具有相當不錯的水氧阻隔性,在薄膜厚度為150 nm下,其水氣穿透率便可小於 ,達到量測機台極限。最後,成功將此有機無機複合薄膜應用於非晶態氧化銦鋅鎵(a-IGZO)薄膜電晶體,並展現出不錯的元件特性。
除了薄膜電晶體外,整流二極體在顯示器電路上、大尺寸電子、軟性電子及透明電子應用上也是必備的。在本論文中,我們成功利用高功函數(~5.1 eV)、高導電、透明有機高分子導體PEDOT:PSS搭配n型非晶態氧化銦鋅鎵(a-IGZO)製造出蕭基接面而形成蕭基二極體。此蕭基二極體展現出低驅動電壓及高整流比(>105, ±1 V)特性,而理想因子為1.5到1.6間。藉由搭配不同的基板及電極,成功製造出軟性、透明及軟性透明的PEDOT:PSS/a-IGZO蕭基二極體。
In the development of low-temperature-processed and flexible thin-film transistors, transparent metal-oxide semiconductors have drawn wide attention. Because of their adequate carrier mobility in the amorphous state, metal-oxide semiconductors are compatible with low temperature processes. Besides, their high transparency can raises the display aperture ratio and could be applied in transparent electronics. In addition to active semiconducting materials, flexible and high-performance dielectric materials are also essential for fully realizing flexible electronics and displays. For instance, high-performance dielectrics are needed for gate insulators of TFTs. To prolong device reliability and lifetimes, passivation layers with low water and oxygen permeation rate are also required. Furthermore, these dielectric materials should be deposited at low temperatures (or even room temperature) to be compatible with plastic substrates often used in flexible electronics.
In this thesis, we investigated the ICP-CVD growth of high-performance dielectric materials at low temperature with organosilicon precursor hexamethyldisiloxane (HMDSO) and O2. By tuning HMDSO/O2 gas ratios, and ICP-CVD powers, organic-inorganic hybrid films were obtained at (or near) room temperature with characteristics tunable from silicone-like (more organic) to silica-like (more inorganic) characteristics. The hybrid films are highly transparent in visible-light region with transmittance >90%, and the hybrid films show high breakdown fields of up to 5.1 MV/cm and low leakage currents, which are comparable to the characteristics of SiOx deposited by PECVD at the temperature of 350℃. The 150-nm hybrid films on PEN plastic substrates exhibit good barrier properties, with low water vapor transmission rate < as measured by Mocon Aquatran model 1 (indeed beyond instrument limit), making it also promising for passivation and barrier applications of flexible electronics. We also successfully applied these hybrid films to a-IGZO TFTs with decent electrical characteristics.
In addition to thin-film transistors, rectified diodes are also an essential circuit element for realizing functional circuits in displays, large-area electronics, flexible electronics, and transparent electronics. In this thesis, we report the successful use of the high-work-function, high-conductivity transparent conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the Schottky contact to form the Schottky junction (and thus Schottky diode) with the n-type semiconductor a-IGZO. The Schottky didoes exhibited a low apparent turn-on voltage, a high rectification ratio of >105 at ±1 V, and a decent ideality factor of ~1.5-1.6. We also demonstrated the applications of PEDOT:PSS/a-IGZO Schottky junctions to various types of Schottky diodes, including the flexible, the transparent, and the flexible transparent PEDOT:PSS/a-IGZO Schottky diodes, by using different substrates and different counter electrodes.
誌謝 I
摘要 II
Abstract IV
Contents VII
List of Figures X
List of Tables XV
Chapter 1 Introduction 1
1.1 Amorphous Oxide Semiconductors and Electronic Device Applications 1
1.2 Organic-Inorganic Hybrid Dielectric Films Grown by Low-Temperature Plasma-Enhanced Chemical Vapor Deposition 3
1.3 Thesis Motivation and Organization 5
References 6
Chapter 2 Organic-Inorganic Hybrid Dielectric Films Grown by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Its Application to a-IGZO TFTs 11
2.1 Introduction 11
2.2 Experiments 13
2.2.1 Inductively Coupled Plasma Chemical Vapor Deposition 13
2.2.2 Characterization Methods 14
2.2.3 Fabrication and Characterization of Thin-Film Transistors 17
2.3 Results and Discussion 20
2.3.1 Deposition Rate 20
2.3.2 Optical Characteristics 21
2.3.3 Electrical Characteristics 22
2.3.4 Fourier Transform Infrared Spectroscopy 23
2.3.5 X-ray Photoelectron Spectroscopy 24
2.3.6 Etching Rate 25
2.3.7 Film Adhesion 26
2.3.8 Water Vapor Transmittance Rate 27
2.3.9 Application in Thin Film Transistors 28
2.4 Summary 30
References 31
Chapter 3 PEDOT:PSS/a-IGZO Schottky Diodes 57
3.1 Introduction 57
3.2 Experiments 59
3.3 Results and Discussion 62
3.3.1 PEDOT:PSS/a-IGZO/Mo devices on glass substrates 62
3.3.2 Flexible, transparent, and flexible transparent PEDOT:PSS/a-IGZO Schottky diodes 67
3.4 Summary 70
References 71
Chapter 4 Summary 82
chapter 1
[1]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432 (2004), 488.
[2]H. Hosono, Solids Journal of Non-Crystalline Solids 352 (2006), 851.
[3]E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, Advanced Materials 17 (2005), 590.
[4]M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, Journal of Physics D: Applied Physics 40 (2007), 1335.
[5]H.-H. Hsieh and C.-C. Wu, Applied Physics Letters 91 (2007), 013502.
[6]R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Journal of the Society for Information Display 15 (2007), 915.
[7]H. Hosono, M. Yasukawa, and H. Kawazoe, Journal of Non-Crystalline Solids 203 (1996), 334.
[8]C.-Y. Lin, C.-H. Tsai, H.-T. Lin, L.-C. Chang, Y.-H. Yeh, Z. Pei, Y.-R. Peng, and C.-C. Wu, Organic Electronics 12 (2011), 1777.
[9]B. N. Pal, J. Sun, B. J. Jung, E. Choi, A. G. Andreou, and H. E. Katz, Advanced Materials 20 (2008), 1023.
[10]A. Kudo, H. Yanagi, K. Ueda, H. Hosono, H. Kawazoe, and Y. Yano, Applied Physics Letters 75 (1999), 2851.
[11]R. K. Gupta, K. Ghosh, and P. K. Kahol, Physica E 41 (2009), 617.
[12]N. Münzenrieder, C. Zysset, L. Petti, T. Kinkeldei, G. A. Salvatore, and G. Tröster, Solid-State Electronics 87 (2013), 17.
[13]M. Lorenz, A. Lajn, H. Frenzel, H. v. Wenckstern, M. Grundmann, P. Barquinha, R. Martins, and E. Fortunato, Applied Physics Letters 97 (2010), 243506.
[14]D. H. Lee, K. Nomura, T. Kamiya and H. Hosono, IEEE Electron Device Letters, 32 (2011), 1695.
[15]H. Kim, S. Kim, K.-K. Kim, S.-N. Lee, and K.-S. Ahn, Japanese Journal of Applied Physics 50 (2011), 105702.
[16]A. Chasin, S. Steudel, K. Myny, M. Nag, T.-H. Ke, S. Schols, J. Genoe, G. Gielen and P. Heremans, Applied Physics Letters 101 (2012), 113505.
[17]A. Chasin, M. Nag, A. Bhoolokam, K. Myny, S. Steudel, S. Schols, J. Genoe, G. Gielen, and P. Heremans, IEEE Transactions on Electron Devices 60 (2013), 3407.
[18]D. S. Wavhal, J. Zhang, M. L. Steen, and E. R. Fisher, Plasma Processes and Polymers 3 (2006), 276.
[19]F. Templier, L. Vallier, R. Madar, J. C. Oberlin, and R. A. B. Devine, Thin Solid Films 241 (1994), 251.
[20]L. Han, P. Mandlik, J. Gartside, S. Wagner, J. A. Silvernail, R. Q. Ma, M. Hack, and J. J. Brown, Journal of The Electrochemical Society 156 (2009), H106.
[21]I. Vinogradov, D. Zimmer, and A. Lunk, Plasma Processes and Polymers 4 (2007), S435.
[22]R. Reuter, K. Rugner, D. Ellerweg, T. de los Arcos, A. von Keudell, and J. Benedikt, Plasma Processes and Polymers 9 (2012), 1116.
[23]R. Morent, N. De Geyter, T. Jacobs, S. Van Vlierberghe, P. Dubruel, C. Leys, and E. Schacht, Plasma Processes and Polymers 6 (2009), S537.
[24]G. Borvon, A. Goullet, A. Granier, and G. Turban, Plasmas and Polymers 7 (2002), 341.
[25]S. Saloum, M. Naddaf, and B. Alkhaled, Vacuum 82 (2008), 742.
[26]R. P. Gandhiraman, S. Daniels, and D. C. Cameron, Plasma Processes and Polymers 4 (2007), S369.
[27]M. Deilmann, M. Grabowski, S. Theiβ, N. Bibinov, and P. Awakowicz, Journal of Physics D: Applied Physics 41 (2008), 135207.
[28]N. Inagaki, S. Kondo, M. Hirata, and H. Urushibata, Journal of Applied Polymer Science 30 (1985), 3385.
[29]P. A. Levermore, H. Q. Pang, A. B. Dyatkin, Z. Elshenawy, P. Mandlik, K. Rajan, J. Silvernail, R. C. Kwong, R. Q. Ma, M. S. Weaver, M. Hack, and J. J. Brown, Journal of the Society for Information Display 19 (2011), 943.
[30]P. Mandlik, J. Gartside, L. Han, I-C. Cheng, S. Wagner, J. A. Silvernail, R. Q. Ma, M. Hack, and J. J. Brown, Applied Physics Letters 92 (2008), 103309.
[31]P. Mandlik, L. Han, S. Wagner, J. A. Silvernail, R. Q. Ma, M. Hack, and J. J. Brown, Applied Physics Letters 93 (2008), 203306.
[32]L. Han, P. Mandlik, K. H. Cherenack, and S. Wagner, Applied Physics Letters 94 (2009), 162105.
[33]L. Han, K. Song, P. Mandlik, and S. Wagner, Applied Physics Letters 96 (2010), 042111.
[34]L. Han, P. Mandlik, and S. Wagner, IEEE Electron Device Letters 30 (2009), 502.

chapter 2
[1] A. G. Erlat, B.-C. Wang, R. J. Spontak, Y. Tropsha, K. D. Mar, D. B. Montgomery and E. A. Vogler, Journal of Materials Research 15 (2000), 704.
[2] A. Sonnenfeld, A. Bieder, P. R. von Rohr, Plasma Processes Polymers 3 (2006), 606.
[3] Y.-S. Li, C.-H. Tsai, S.-H. Kao, I-W. Wu, J.-Z. Chen, C.-I Wu, C.-F. Lin and I-C. Cheng, Journal of Physics D: Applied Physics 46 (2013), 43.
[4] T. W. Kim, M. Yan, A. G. Erlat, P. A. McConnelee, M. Pellow, J. Deluca, T. P. Feist, and A. R. Duggal, Journal of Vacuum Science & Technology A 23 (2005), 4.
[5] H. Biederman, Plasma Polymer Films. London: Imperial College Press (2004), 57.
[6] L. Zajickova, V. Bursikova, Z. Kucerova, D. Franta, P. Dvorak, R. Smid, V. Perina and A. Mackova, Plasma Sources Science Technology 16 (2007), S123.
[7] G. P. Crawford, Flexible Flat Panel Display, Chichester, England: John Wiley & Sons (2005), ch.4.
[8] A. Salleo and W. S. Wong, Flexible Electronics: Materials and Applications, Boston, MA: Springer-Verlag US (2009), ch.13.
[9] A. Gruniger, A. Bieder, A. Sonnenfeld, Ph. R. Rohr, U. Muller, R. Hauert, Surface and Coatings Technology 200 (2006), 4564.
[10] D. S. Wavhal, J. Zhang, M. L. Steen, E. R. Fisher, Plasma Processes and Polymers 3 (2006), 276.
[11] K. Aumaille, C. Vallee, A. Granier, A. Goullet, F. Gaboriau, G. Turban, Thin Solid Film 359 (2000), 188.
[12] A Granier, F Nicolazo, C Vallee, A Goullet, G Turban and B Grolleau, Plasma Sources Science Technology 6 (1997), 147.
[13] C.-T. Lin, F. Li, and T. D. Mantei, Journal of Vacuum Science & Technology A 17 (1999), 3.
[14] F. Fracassi, R. d’Agostino, F. Fanelli, A. Fornelli, and F. Palumbo, Plasmas and Polymers 8 (2003), 4.
[15] G. Borvon, A. Goullet, A. Granier, and G. Turban, Plasmas and Polymers 7 (2002), 4.
[16] N. Benissad, C. Boisse-Laporte, C. Vallee, A. Granier, A. Goullet, Surface and Coatings Technology 116 (1999), 868.
[17] L. Han, P. Mandlik, J. Gartside, S. Wagner, J. A. Silvernail, R.-Q. Ma, M. Hack, and J. J. Brown, Journal of The Electrochemical Society 156 (2009), H106.
[18] P. Mandlik, J. Gartside, L. Han, I-C. Cheng, S. Wagner, J. A. Silvernail, R.-Q. Ma, M. Hack, and J. J. Brown, Applied Physics Letters 92 (2008), 103309.
[19] L. Han, P. Mandlik, and S. Wagner, IEEE Electron Device Letters 30 (2009), 502.
[20] SIGMA-ALDRICH, SAFETY DATA SHEET : HMDSO-MSDS
[21] K. Badeker, Annalen der Physik (Leipzig) 22 (1907), 749.
[22] C. A. Pan and T. P. Ma, Applied Physics Letters 37 (1980), 163.
[23] I. Hamberg and C. G. Granqvist, Journal of Applied Physics 60 (1986), 123.
[24] 龔彥誠, ”低溫化學氣象成長介電層材料與運用” (2011).
[25] M.R. Alexander, R.D. Short, F.R. Jones, W. Michaeli, and C.J. Blomfield, Applied Surface Science 137 (1998), 179.
[26] R. Maurau, N. D. Boscher, J. Guillot,and P. Choquet, Plasma Processes and Polymers 9 (2012), 316.
[27] K. Lahtinen, and J. Kuusipalo, 11th TAPPI European PLACE Conference (2007), 1.
[28] Zehntner ZCC, Zehntner ZCC 2087 Cross-cut Tester Product Manual (2015), http://www.chuanhua.com.tw/ch-web/pdf/new/zehntner_zcc_zsh.pdf.


chapter 3
[1]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432 (2004), 488.
[2]H. Hosono, Solids Journal of Non-Crystalline Solids 352 (2006), 851.
[3]E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, Advanced Materials 17 (2005), 590.
[4]M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, Journal of Physics D: Applied Physics 40 (2007), 1335.
[5]H.-H. Hsieh and C.-C. Wu, Applied Physics Letters 91 (2007), 013502.
[6]R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Journal of the Society for Information Display 15 (2007), 915.
[7]C.-Y. Lin, C.-H. Tsai, H.-T. Lin, L.-C. Chang, Y.-H. Yeh, Z. Pei, Y.-R. Peng, and C.-C. Wu, Organic Electronics 12 (2011), 1777.
[8]B. N. Pal, J. Sun, B. J. Jung, E. Choi, A. G. Andreou, and H. E. Katz, Advanced Materials 20 (2008), 1023.
[9]A. Kudo, H. Yanagi, K. Ueda, H. Hosono, H. Kawazoe, and Y. Yano, Applied Physics Letters 75 (1999), 2851.
[10]R. K. Gupta, K. Ghosh, and P. K. Kahol, Physica E 41 (2009), 617.
[11]N. Münzenrieder, C. Zysset, L. Petti, T. Kinkeldei, G. A. Salvatore, and G. Tröster, Solid-State Electronics 87 (2013), 17.
[12]M. Lorenz, A. Lajn, H. Frenzel, H. v. Wenckstern, M. Grundmann, P. Barquinha, R. Martins, and E. Fortunato, Applied Physics Letters 97 (2010), 243506.
[13]D. H. Lee, K. Nomura, T. Kamiya and H. Hosono, IEEE Electron Device Letters, 32 (2011), 1695.
[14]H. Kim, S. Kim, K.-K. Kim, S.-N. Lee, and K.-S. Ahn, Japanese Journal of Applied Physics 50 (2011), 105702.
[15]A. Chasin, S. Steudel, K. Myny, M. Nag, T.-H. Ke, S. Schols, J. Genoe, G. Gielen and P. Heremans, Applied Physics Letters 101 (2012), 113505.
[16]A. Chasin, M. Nag, A. Bhoolokam, K. Myny, S. Steudel, S. Schols, J. Genoe, G. Gielen, and P. Heremans, IEEE Transactions on Electron Devices 60 (2013), 3407.
[17]A. Chipman, Nature 449 (2007), 131.
[18]F. Zhang, M. Johansson, M. R. Andersson, J. C. Hummelen, O. Inganäs, Advanced Materials 14 (2002), 662.
[19]J. Ouyang, C.-W. Chu, F.-C. Chen, Q. Xu, Y. Yang, Advanced Functional Materials 15 (2005), 203.
[20]K. Fehse, K. Walzer, K. Leo, W. Lövenich, A. Elschner, Advanced Materials 19 (2007), 441.
[21]Y.-H. Huang, C.-Y. Lu, S.-T. Tsai, Y.-T. Tsai, C.-Y. Chen, W.-L. Tsai, C.-Y. Lin, H.-W. Chang, W.-K. Lee, M. Jiao, C.-C. Wu, Applied Physics Letters 104 (2014), 183302.
[22]D. Vaufrey, M. B. Khalifa, J. Tardy, C. Ghica, M. G. Blanchin, C. Sandu, and J. A. Roger, Semiconductor Science and Technology 18 (2003), 253.
[23]S. M. Sze, Physics of Semiconductor Devices (1981), New York, Wiley, p. 258.
[24]A. Takagi, K. Nomura, H. Ohta, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 486 (2005), 38.
[25]T. Kamiya and H. Hosono, NPG Asia Materials 2 (2010), 15.
[26]S. M. Sze, Physics of Semiconductor Devices (1981), New York, Wiley, p. 249.
[27]D. H. Lee, K. Nomura, T. Kamiya, and H. Hosono, ECS Solid State Letters 1 (2012), Q8-Q10.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊