跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 09:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:唐寬
研究生(外文):Kuan Tang
論文名稱:應用於音頻的三角積分類比數位轉換器
論文名稱(外文):Delta-Sigma ADC for Audio Applications
指導教授:呂學士林宗賢林宗賢引用關係
指導教授(外文):Shey-Shi Lu
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:77
中文關鍵詞:三角積分調變雜訊成型超取樣低功耗連續時間
外文關鍵詞:Delta-sigma modulatornoise shapingoversamplinglow powercontinuous-time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聲音,是人接觸外界的一個媒介。人耳作為一個接受器,能接收20至20000赫茲的頻率,且有非常高的敏感度。隨著科技日新月異的進步,儲存裝置的空間成指數性的成長,人們對於聲音解析度的需求也愈發的旺盛,高解析度的類比數位轉換器及數位類比轉換器更是不可或缺。近年,手持式裝置及穿戴式裝置的蓬勃發展,以及環保意識的興起,低功耗也成為了設計電路的考量。快速連續漸進暫存器式類比數位轉換器雖然具有中速與低功耗的優點,然而其解析度會受到電容大小的限制,當需求超過12位元時,其功耗與設計難度會大幅的增加。而音頻信號頻率小於兩萬赫茲,符合三角積分式類比數位轉換器操作頻率低的特性。三角積分式類比數位轉換器可透過雜訊形塑的方式降低高頻的量化雜訊;同時,藉由高於訊號頻率數倍的取樣頻率,可以降低頻帶內的雜訊。透過這兩種效果,三角積分式類比數位轉換器可以輕易達到高解析度的效果。
本篇論文提出應用於音頻的低功耗三角積分類比數位轉換器的設計方法,包括整體系統規格設計、前端MATLAB程式模擬,並詳細分析各種非理想效應對於效能的影響,同時使用模擬來作驗證。電路使用UMC 0.18um的製程技術來完成。設計上使用CIFF的三階架構,以減少能量的消耗。設計在布局後的解析度,成功達到了高解析度的目標。
The voice is a medium that touches the outside world. The human ear as a receiver, can receive 20 to 20000 Hz frequency, and has a very high sensitivity. With the rapid progress of science and technology, the storage device space into the exponential growth, people demand for sound resolution is also increasingly strong, high-resolution analog digital converter and digital analog converter is indispensable. In recent years, the vigorous development of handheld devices and wearable devices, as well as the rise of environmental awareness, low power consumption has become a design consideration. Successive approximation register analog-to-digital converter has the advantages of medium speed and low power consumption, but its resolution will be limited by the size of the capacitor, when the demand exceeds 12 bits, the power consumption will significantly increase and design will be difficult. While the audio signal frequency is less than twenty thousand hertz, which is match in delta-sigma analog-to-digital converter operating frequency characteristics. Delta-sigma analog-to-digital converters can reduce the high-frequency quantization noise through noise shaping. At the same time, the noise in-band can be reduced by sampling the frequency higher than the signal frequency several times. Through these two effects, delta-sigma analog-to-digital converter can easily achieve high-resolution.
This thesis presents a design method for low-power delta-sigma analog-to-digital converters for audio applications, including overall system specification design, MATLAB program simulation, and detailed analysis of the effects of various non-ideal effects on performance, while using simulation for verification. The circuit is done using UMC 0.18um process technology. We use 3rd-order CIFF architecture to reduce energy consumption. The first design after the layout of the resolution, successfully reached the high-resolution goal.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 2
Chapter 2 Basic Background Information 3
2.1 Fundamental of Analog-to-Digital Converters 3
2.2 Types of ADCs 5
2.2.1 Nyquist Rate ADCs 6
2.2.2 Oversampling ADCs 7
2.3 Quantization Noise 9
2.4 Oversampling 11
2.5 Noise Shaping 13
2.5.1 First-Order Noise Shaping 15
2.5.2 Second-Order Noise Shaping 16
2.5.3 Nth-Order Noise Shaping 18
2.6 Overall Architecture 19
2.6.1 Loop Filter 19
2.6.2 Quantizer 23
2.6.3 Digital-to-Analog Converter 26
2.7 Continuous-Time Delta-Sigma Modulator 27
2.7.1 Z-Domain to S-Domain Transformation 28
2.7.2 DAC Waveform and Clock Jitter 29
2.7.3 Metastability and Excess Loop Delay 32
2.8 Summary 33
Chapter 3 Continuous-Time DSM Model Analysis and Simulation 34
3.1 Design Flow and Consideration 34
3.2 MATLAB Simulation 36
3.2.1 Loop Filter Non-idealities Simulation in MATLAB 39
3.2.2 DAC Non-idealities Simulation 42
3.3 Cadence Simulation 44
3.3.1 Transient Simulation 46
3.3.2 Device Noise Simulation 49
3.4 Conclusion 50
Chapter 4 Continuous-Time Delta-Sigma Modulator Implementation 51
4.1 Loop Filter 51
4.1.1 OP Design 52
4.1.2 Resistors and Capacitors Value in Signal Path 56
4.2 SAR ADC 57
4.3 Dynamic Element Matching (DEM) 59
4.4 DAC 59
4.5 Calibration Circuit 62
4.6 Whole System Simulation Result 65
4.6.1 Pre-Simulation 65
4.6.2 Simulation with Real Resistors and Capacitors 65
4.6.3 Simulation with Device Noise 66
Chapter 5 Conclusion 71
References 73
Alan V. Oppenheim, Alan S. Willsky with S. Hamid Nawab “Signal and Systems Second Edition”.
Tony Chan Carusone, David A. Jones and Kenneth W. Martin “Analog Circuit Design Second Edition” John Wiely and Sons Inc. 2011.
Yun Chiu “High-Performance Pipeline A/D Converter Design in Deep-Submicron CMOS” Fall, 2004.
Bezard Razavi “Design of Analog CMOS Integrated Circuits” McGraw-Hill Companies, Inc. 2001.
F. Mun ̃oz, K. Philips, A. Torralba “A 4.7mW 89.5dB DR CT Complex ΔΣ ADC with Built-In LPF” ISSCC, session 27, 2005.
Richard Schreier, Gabor C. Temes “Understanding Delta-Sigma Data Converters” John Wiely and Sons Inc, 2005.
W. Lee, “A novel higher order interpolative modulator topology for high resolution oversampling A/D converters,” Masters degree, Massachusetts Inst. Technol., Cambridge, MA, USA, 1987.
R.T. Baird and T.S. Fiez, “Linearity enhancement of multibit ∆Σ A/D and D/A converters using data weighted averaging,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Proc., vol. 42, no. 12, pp. 753-762, Dec. 1995.
James A. Cherry and W. Martin Snelgrove “Excess Loop Delay in Continuous-Time Delta-Sigma Modulators” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Proc. , vol. 46, no. 4, pp. 376-389, April 1999.
F. M. Gardner, “A transformation for digital simulation of analog filters,” IEEE Trans. Commun., vol. 44, pp. 676–680, July 1986.
James A. Cherry and W. Martin Snelgrove “Clock Jitter and Quantizer Metastability in Continuous-Time Delta-Sigma Modulators” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Proc. , vol. 46, no. 6, pp. 661-676, June 1999.
R.D. Yates, D.J. Goodman, “Probability and Stochastic Processes 2nd Edition,” John Wiley and Sons, 2005.
J. F. Jensen, G. Raghavan, A. E. Cosand, and R. H. Walden, “A 3.2-GHz second-order delta-sigma modulator implemented in InP HBT technology,” IEEE J. Solid-State Circuits, vol. 30, pp. 1119–1127, Oct.1995.
Pavan, Shanthi, et al. "A Power Optimized Continuous-Time Delta Sigma ADC for Audio Applications." IEEE Journal of Solid-State Circuits 43.2 (2008): 351-360.
Pavan, Shanthi. "Excess loop delay compensation in continuous-time delta-sigma modulators." IEEE Transactions on Circuits and Systems II: express briefs 55.11 (2008): 1119-1123.
Peiro Malcovati, Simona Brigati, Fabrizio Francesconi, Franco Maloberti, Paolo Cusinato, and Andrea Baschirotto “Behavioral Modeling of Switched-Capacitor Sigma-Delta Modulators,” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 3, pp. 352-364, March 2003.
Stacy Ho, Chi-Lun Lo, Jiayun Ru, and Jialin Zhao “A 23mW, 73 dB Dynamic Range, 80MHz BW Continuous-Time Delta-Sigma Modulator in 20nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no.4, April 2015.
Lee, Hae-Seung, and Jeffrey Gealow. "Power-efficient amplifier frequency compensation for continuous-time delta-sigma modulators." Circuits and Systems (MWSCAS), 2013 IEEE 56th International Midwest Symposium on. IEEE, 2013.
D. Yeon et al., “Power-efficient amplifier frequency compensation for continuous-time delta-sigma modulators,” inProc. IEEE 56th Int. Midwest Symp. Circuits Syst., 2013, pp. 562-565.
Lo, Chi-Lun, et al. "A 75.1 dB SNDR 840MS/s CT ΔΣ modulator with 30MHz bandwidth and 46.4 fJ/conv FOM in 55nm CMOS." VLSI Circuits (VLSIC), 2013 Symposium on. IEEE, 2013.
Leung, Bosco H., and Sehat Sutarja. "Multibit sigma-delta A/D converter incorporating a novel class of dynamic element matching techniques." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 39.1 (1992): 35-51.
Pavan, Shanthi, and Prabu Sankar. "Power reduction in continuous-time delta-sigma modulators using the assisted opamp technique." IEEE Journal of Solid-State Circuits 45.7 (2010): 1365-1379.
Sukumaran, Amrith, and Shanthi Pavan. "Low power design techniques for single-bit audio continuous-time delta sigma ADCs using FIR feedback." IEEE Journal of Solid-State Circuits 49.11 (2014): 2515-2525.
De Berti, Claudio, et al. "A 106 dB A-Weighted DR Low-Power Continuous-Time Sigma-Delta Modulator for MEMS Microphones." IEEE Journal of Solid-State Circuits 51.7 (2016): 1607-1618.
Park, Hyunsik, et al. "A 0.7-V 870-uW Digital-Audio CMOS Sigma-Delta Modulator." IEEE Journal of Solid-State Circuits 44.4 (2009): 1078-1088.
Wang, Tao, et al. "A 101 dB DR 1.1 mW audio delta-sigma modulator with direct-charge-transfer adder and noise shaping enhancement." Solid State Circuits Conference (A-SSCC), 2012 IEEE Asian. IEEE, 2012.
Gönen, Burak, et al. "15.7 A 1.65 mW 0.16 mm2 dynamic zoom-ADC with 107.5 dB DR in 20kHz BW." Solid-State Circuits Conference (ISSCC), 2016 IEEE International. IEEE, 2016.
Chae, Youngcheol, and Gunhee Han. "Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator." IEEE Journal of Solid-State Circuits44.2 (2009): 458-472.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊