|
1.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-9. 2.Schwierz, F., Graphene transistors. Nat Nanotechnol 2010, 5 (7), 487-96. 3.Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 2005, 102 (30), 10451-3. 4.Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zettl, A., The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Applied Physics Letters 2008, 92 (13), 133107. 5.Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F., Mono- and bilayer WS2 light-emitting transistors. Nano Lett 2014, 14 (4), 2019-25. 6.Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS2 transistors. Nat Nanotechnol 2011, 6 (3), 147-50. 7.Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; Song, X.; Hwang, H. Y.; Cui, Y.; Liu, Z., Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7 (10), 8963-71. 8.Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 2012, 7 (11), 699-712. 9.Xu, M.; Liang, T.; Shi, M.; Chen, H., Graphene-like two-dimensional materials. Chem Rev 2013, 113 (5), 3766-98. 10.Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7 (4), 2898-926. 11.Feng, L.-p.; Wang, Z.-q.; Liu, Z.-t., First-principles calculations on mechanical and elastic properties of 2H- and 3R-WS2 under pressure. Solid State Communications 2014, 187, 43-47. 12.Yebka, B., Studies of lithium intercalation in 3R-WS2. Solid State Ionics 1996, 90 (1-4), 141-149. 13.Schutte, W. J.; De Boer, J. L.; Jellinek, F., Crystal structures of tungsten disulfide and diselenide. Journal of Solid State Chemistry 1987, 70 (2), 207-209. 14.Gutierrez, H. R.; Perea-Lopez, N.; Elias, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; Lopez-Urias, F.; Crespi, V. H.; Terrones, H.; Terrones, M., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 2013, 13 (8), 3447-54. 15.Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Lu, J.; Huang, B., Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys Chem Chem Phys 2011, 13 (34), 15546-53. 16.Zeng, H.; Liu, G. B.; Dai, J.; Yan, Y.; Zhu, B.; He, R.; Xie, L.; Xu, S.; Chen, X.; Yao, W.; Cui, X., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep 2013, 3, 1608. 17.Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7 (1), 791-7. 18.Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G., Optical Properties of MS2 (M = Mo, W) Inorganic Fullerenelike and Nanotube Material Optical Absorption and Resonance Raman Measurements. Journal of Materials Research 2011, 13 (09), 2412-2417. 19.Ballif, C.; Regula, M.; Schmid, P. E.; Remškar, M.; Sanjinés, R.; Lévy, F., Preparation and characterization of highly oriented, photoconducting WS2 thin films. Applied Physics A Materials Science & Processing 1996, 62 (6), 543-546. 20.Liu, L.; Kumar, S. B.; Ouyang, Y.; Guo, J., Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors. IEEE Transactions on Electron Devices 2011, 58 (9), 3042-3047. 21.Kuru, C.; Choi, D.; Kargar, A.; Liu, C. H.; Yavuz, S.; Choi, C.; Jin, S.; Bandaru, P. R., High-performance flexible hydrogen sensor made of WS(2) nanosheet-Pd nanoparticle composite film. Nanotechnology 2016, 27 (19), 195501. 22.Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S.; Lv, R.; Hayashi, T.; López-Urías, F.; Ghosh, S.; Muchharla, B.; Talapatra, S.; Terrones, H.; Terrones, M., Photosensor Device Based on Few-Layered WS2Films. Advanced Functional Materials 2013, 23 (44), 5511-5517. 23.Guan, H.; Luo, Y.; Chen, C.; Kai, X.; peng, s.; Tang, J.; Lu, H.; Yu, J.; Zhang, J.; Xiao, Y.; Chen, Z., All fiber-optic humidity sensor based on tungsten disulfide (WS2 ). 2016, Th4A.29. 24.Qiu, D.; Lee, D. U.; Lee, K. S.; Pak, S. W.; Kim, E. K., Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures. Nano Research 2016, 9 (8), 2319-2326. 25.Schaller, R. R., Moore''s law: past, present and future. IEEE Spectrum 1997, 34 (6), 52-59. 26.Liu, H.; Neal, A. T.; Ye, P. D., Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6 (10), 8563-9. 27.Yan, R. H.; Ourmazd, A.; Lee, K. F., Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Transactions on Electron Devices 1992, 39 (7), 1704-1710. 28.Frank, D. J.; Taur, Y.; Wong, H. S. P., Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Device Letters 1998, 19 (10), 385-387. 29.Ouyang, Q.; Zeng, S.; Jiang, L.; Hong, L.; Xu, G.; Dinh, X. Q.; Qian, J.; He, S.; Qu, J.; Coquet, P.; Yong, K. T., Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor. Sci Rep 2016, 6, 28190. 30.Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C.; Wong, H. P.; Javey, A., MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354 (6308), 99-102. 31.Liu, X.; Hu, J.; Yue, C.; Della Fera, N.; Ling, Y.; Mao, Z.; Wei, J., High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 2014, 8 (10), 10396-402. 32.Jeon, M. H.; Ahn, C.; Kim, H.; Kim, K. N.; Li, N. T.; Qin, H.; Kim, Y.; Lee, S.; Kim, T.; Yeom, G. Y., Controlled MoS(2) layer etching using CF(4) plasma. Nanotechnology 2015, 26 (35), 355706. 33.Huang, Y.; Wu, J.; Xu, X.; Ho, Y.; Ni, G.; Zou, Q.; Koon, G. K. W.; Zhao, W.; Castro Neto, A. H.; Eda, G.; Shen, C.; Özyilmaz, B., An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Research 2013, 6 (3), 200-207. 34.Withers, F.; Bointon, T. H.; Hudson, D. C.; Craciun, M. F.; Russo, S., Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment. Scientific Reports 2014, 4. 35.Lee, G.-H.; Yu, Y.-J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J., Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Applied Physics Letters 2011, 99 (24), 243114. 36.Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J., Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488 (7413), 627-32. 37.Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J., Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 2010, 5 (10), 722-6. 38.Iqbal, M. W.; Iqbal, M. Z.; Jin, X.; Eom, J.; Hwang, C., Superior characteristics of graphene field effect transistor enclosed by chemical-vapor-deposition-grown hexagonal boron nitride. Journal of Materials Chemistry C 2014, 2 (37), 7776. 39.Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Shehzad, M. A.; Seo, Y.; Park, J. H.; Hwang, C.; Eom, J., High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep 2015, 5, 10699. 40.Late, D. J.; Liu, B.; Matte, H. S. S. R.; Rao, C. N. R.; Dravid, V. P., Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates. Advanced Functional Materials 2012, 22 (9), 1894-1905. 41.Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S., Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4 (5), 2695-700. 42.Molina-Sánchez, A.; Wirtz, L., Phonons in single-layer and few-layer MoS2and WS2. Physical Review B 2011, 84 (15). 43.Sourisseau, C.; Cruege, F.; Fouassier, M.; Alba, M., Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chemical Physics 1991, 150 (2), 281-293. 44.Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T., Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2Monolayer from Chemical Vapor Deposition. Advanced Optical Materials 2014, 2 (2), 131-136. 45.Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C.; Terrones, H.; Terrones, M., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports 2013, 3 (1). 46.Peimyoo, N.; Shang, J.; Cong, C.; Shen, X.; Wu, X.; Yeow, E. K.; Yu, T., Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles. ACS Nano 2013, 7 (12), 10985-94. 47.Mattheiss, L. F., Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. Physical Review B 1973, 8 (8), 3719-3740. 48.Yim, C.; O''Brien, M.; McEvoy, N.; Winters, S.; Mirza, I.; Lunney, J. G.; Duesberg, G. S., Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Applied Physics Letters 2014, 104 (10), 103114. 49.Zhou, L.; Yan, S.; Pan, L.; Wang, X.; Wang, Y.; Shi, Y., A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries. Nano Research 2016, 9 (3), 857-865. 50.Zhou, P.; Xu, Q.; Li, H.; Wang, Y.; Yan, B.; Zhou, Y.; Chen, J.; Zhang, J.; Wang, K., Fabrication of Two-Dimensional Lateral Heterostructures of WS2/WO3⋅H2O Through Selective Oxidation of Monolayer WS2. Angewandte Chemie 2015, 127 (50), 15441-15445. 51.Cui, Y.; Xin, R.; Yu, Z.; Pan, Y.; Ong, Z. Y.; Wei, X.; Wang, J.; Nan, H.; Ni, Z.; Wu, Y.; Chen, T.; Shi, Y.; Wang, B.; Zhang, G.; Zhang, Y. W.; Wang, X., High-Performance Monolayer WS2 Field-Effect Transistors on High-kappa Dielectrics. Adv Mater 2015, 27 (35), 5230-4. 52.Zhang, W.; Huang, Z.; Zhang, W.; Li, Y., Two-dimensional semiconductors with possible high room temperature mobility. Nano Research 2014, 7 (12), 1731-1737. 53.Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J., High performance multilayer MoS2 transistors with scandium contacts. Nano Lett 2013, 13 (1), 100-5. 54.Li, S. L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. W.; Lin, Y. F.; Aparecido-Ferreira, A.; Tsukagoshi, K., Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett 2013, 13 (8), 3546-52. 55.Luo, B.; Liu, J.; Zhu, S. C.; Yi, L., Chromium is proposed as an ideal metal to form contacts with monolayer MoS2 and WS2. Materials Research Express 2015, 2 (10), 106501. 56.Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A., Electrical transport properties of single-layer WS2. ACS Nano 2014, 8 (8), 8174-81. 57.Namgung, S. D.; Yang, S.; Park, K.; Cho, A. J.; Kim, H.; Kwon, J. Y., Influence of post-annealing on the off current of MoS2 field-effect transistors. Nanoscale Res Lett 2015, 10, 62. 58.Chen, M.; Nam, H.; Wi, S.; Ji, L.; Ren, X.; Bian, L.; Lu, S.; Liang, X., Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Applied Physics Letters 2013, 103 (14), 142110. 59.Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S., Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. Journal of Applied Physics 2007, 101 (1), 014507. 60.Bao, W.; Cai, X.; Kim, D.; Sridhara, K.; Fuhrer, M. S., High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Applied Physics Letters 2013, 102 (4), 042104. 61.Yu, Z.; Ong, Z.-Y.; Li, S.; Xu, J.-B.; Zhang, G.; Zhang, Y.-W.; Shi, Y.; Wang, X., Analyzing the Carrier Mobility in Transition-Metal Dichalcogenide MoS2 Field-Effect Transistors. Advanced Functional Materials 2017, 1604093. 62.Kim, K. K.; Hsu, A.; Jia, X.; Kim, S. M.; Shi, Y.; Dresselhaus, M.; Palacios, T.; Kong, J., Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 2012, 6 (10), 8583-90. 63.Park, W.; Park, J.; Jang, J.; Lee, H.; Jeong, H.; Cho, K.; Hong, S.; Lee, T., Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 2013, 24 (9), 095202. 64.Late, D. J.; Liu, B.; Matte, H. S.; Dravid, V. P.; Rao, C. N., Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6 (6), 5635-41. 65.Egginger, M.; Bauer, S.; Schwödiauer, R.; Neugebauer, H.; Sariciftci, N. S., Current versus gate voltage hysteresis in organic field effect transistors. Monatshefte für Chemie - Chemical Monthly 2009, 140 (7), 735-750. 66.Park, Y.; Baac, H. W.; Heo, J.; Yoo, G., Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Applied Physics Letters 2016, 108 (8), 083102. 67.Li, T.; Du, G.; Zhang, B.; Zeng, Z., Scaling behavior of hysteresis in multilayer MoS2 field effect transistors. Applied Physics Letters 2014, 105 (9), 093107.
|