跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄒宏昌
研究生(外文):Hung-Chang Tsou
論文名稱:六方氮化硼基板應用於二維材料二硫化鎢薄膜電晶體特性探討
論文名稱(外文):Study of Two Dimensional Material Tungsten Disulfide Thin Film Transistors with Hexagonal Boron Nitride Substrate
指導教授:李嗣涔李嗣涔引用關係
指導教授(外文):Si-Chen Lee
口試日期:2017-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:91
中文關鍵詞:二硫化鎢薄膜電晶體聚二甲基矽氧烷六方氮化棚電洞摻雜效應退火遲滯效應
外文關鍵詞:tungsten disulfide (WS2) thin film transistorpolydimethylsiloxane (PDMS)hexagonal boron nitride (H-BN)p-doping effectannealinghysteresis effect.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用機械剝離法分離出擁有奈米級厚度的二硫化鎢,並製作出薄膜電晶體,在機械剝離法中,搭配聚二甲基矽氧烷去除二硫化鎢表面的殘膠,利用光學顯微鏡及原子力顯微鏡的搭配篩選出較佳厚度範圍的二硫化鎢,並利用低功函數金屬鉻當作金屬電極來達成歐姆接觸。其電晶體最好的電流開關比可以高達7個數量級,最好的場效電子遷移率可以達到約38 cm2/V-sec。
由於二硫化鎢的特性隨著厚度不同而有不同的變化,加上機械剝離法分離出隨機厚度的二硫化鎢,因此利用離子反應蝕刻機,四氟甲烷電漿進行二硫化鎢的蝕刻,得到適當厚度範圍的二硫化鎢薄膜電晶體。在電性圖中,經過4秒鐘的蝕刻,其臨界電壓往正電壓位移27 V,電洞摻雜濃度為1.94×1012 cm-2,此外,由於蝕刻對二硫化鎢表面的破壞,電晶體的電流開關比及場效電子遷移率皆下降。
傳統上,使用二氧化矽作為基板,但其場效電子遷移率遠小於理論預測結果,原因為二氧化矽與二硫化鎢間的缺陷導致,因此,選擇結構相近且無懸浮鍵的六方氮化棚作為基板,在電性圖中,電流開關比達到7個數量級,場效電子遷移率高達106 cm2/V-sec,相比二氧化矽基板,提升179%
在空氣中二硫化鎢表面會物理吸附環境中的水氣和氧分子,造成電洞摻雜的效應並且產生遲滯現象,最後使用氮化棚基板和退火可完全消除遲滯效應。
In this thesis, the mechanically exfoliated 2D material WS2 nanosheet was successfully used to fabricate thin film transistor. Using 3M scotch tape method and PDMS stamp can avoid the residues of 3M scotch tape being left on the surface of WS2. Using optical microscopy and atomic force microscopy, the WS2 flakes with appropriate thickness can be chosen. Ohmic contact of WS2 TFT can be achieved by low work function metal Chromium. The highest on/off current ratio of MoS2 TFT was up to 7 order of magnitude and the mobility of 38 cm2/V-sec was achieved.
The electronic and physical properties of WS2 are greatly dependent on the layer thickness and owing to the scotch tape method , the thickness of the WS2 flakes is random. Therefore , in order to get the appropriate thickness of WS2 , CF4 plasma is used to control the thickness of WS2 flakes by reactive ion etching (RIE). From XPS spectra after etching, the Fermi level of the WS2 moves downward valence band which represents the p-doping effect. In I-V characteristics, the threshold voltage shifts to higher positive voltage about 27 V and 1.94×1012 cm-2 induced carrier charge density are achieved after 4 sec CF4 gas plasma etching. In addition, owing to the damage of the WS2 surface after etching, the on/off current ratio and mobility both decreased.
In general, the mobility of WS2 TFT on the SiO2 substrate measured in experiments is much lower than the theoretical calculation and it can be attributed to the defects existing in the WS2/SiO2 interface. Hence, the hexagonal boron nitride (h-BN) is an ideal substrate because it provides an atomically flat surface without dangling bonds and charged impurity. In I-V characteristics, the on/off current ratio is up to 107 and the field-effect mobility is 106 cm2/V-sec. The mobility is enhanced by 179%.
Besides, it is found that the oxygen and water molecules are easily adsorbed at the WS2 surface in air, which would lead to p-doping effect and hysteresis in devices. The hysteresis effect and the humidity issue can be reduced by annealing. Further, the hysteresis effect can be completely eliminated with h-BN substrate because it has few charge impurities.
摘要 i
ABSTRACT iV
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Overview of Tungsten Disulfide 1
1.2 Advantages of 2D material WS2 Field Effect Transistors 7
1.3 Motivation 11
Chapter 2 Experiments 13
2.1 The fabrication Systems 13
2.1.1 Photolithography 13
2.1.2 Thermal Evaporation 13
2.1.3 Annealing 14
2.1.4 Reactive ion etching (RIE) 14
2.2 Measurement Techniques 16
2.2.1 Atomic Force Microscopy (AFM) 16
2.2.2 Raman Spectroscopy 16
2.2.3 Photoluminescence (PL) 17
2.2.4 Ultraviolet–visible spectroscopy (UV-Vis) 17
2.2.5 X-ray Photoelectron Spectroscopy (XPS) 18
2.2.6 Current – Voltage Characteristics 18
Chapter 3 Material Analysis for WS2 19
3.1 Substrate Preparation 19
3.2 Preparation of Exfoliated WS2 19
3.3 Characterization of WS2 Film Thickness 21
3.3.1 Optical Microscopy 22
3.3.2 Atomic Force Microscopy 24
3.3.3 Reactive ion etching (RIE) 27
3.4 Optical and Vibrational Properties of WS2 30
3.4.1 Raman Spectroscopy 30
3.4.2 Photoluminescence 34
3.4.3 Ultraviolet–visible spectroscopy 37
3.5 X-ray photoelectron spectroscopy 40
3.5.1 Stability of WS2 in Air 42
Chapter 4 WS2 Thin Film Transistors 44
4.1 Back-gated TFTs of WS2 44
4.1.1 Ideal Layer Thickness for WS2 TFTs 44
4.1.2 Device Process Flow 46
4.1.3 Annealing 48
4.1.4 Device Performance 51
4.2 Using RIE to control the thickness of WS2 55
4.2.1 Device Performance 56
4.2.2 Material Analysis 59
4.3 Boron nitride substrate for back-gated WS2 TFT 63
4.3.1 System setup for WS2/h-BN heterostructure 63
4.3.2 Device Process Flow 65
4.3.3 Device Performance 67
4.4 Humidity effect on WS2 TFTs 71
4.5 Hysteresis in Back-gated WS2 TFTs 73
4.6 Summary 78
Chapter 5 Conclusions 79
References 81
1.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-9.
2.Schwierz, F., Graphene transistors. Nat Nanotechnol 2010, 5 (7), 487-96.
3.Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 2005, 102 (30), 10451-3.
4.Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zettl, A., The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Applied Physics Letters 2008, 92 (13), 133107.
5.Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F., Mono- and bilayer WS2 light-emitting transistors. Nano Lett 2014, 14 (4), 2019-25.
6.Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS2 transistors. Nat Nanotechnol 2011, 6 (3), 147-50.
7.Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; Song, X.; Hwang, H. Y.; Cui, Y.; Liu, Z., Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7 (10), 8963-71.
8.Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 2012, 7 (11), 699-712.
9.Xu, M.; Liang, T.; Shi, M.; Chen, H., Graphene-like two-dimensional materials. Chem Rev 2013, 113 (5), 3766-98.
10.Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7 (4), 2898-926.
11.Feng, L.-p.; Wang, Z.-q.; Liu, Z.-t., First-principles calculations on mechanical and elastic properties of 2H- and 3R-WS2 under pressure. Solid State Communications 2014, 187, 43-47.
12.Yebka, B., Studies of lithium intercalation in 3R-WS2. Solid State Ionics 1996, 90 (1-4), 141-149.
13.Schutte, W. J.; De Boer, J. L.; Jellinek, F., Crystal structures of tungsten disulfide and diselenide. Journal of Solid State Chemistry 1987, 70 (2), 207-209.
14.Gutierrez, H. R.; Perea-Lopez, N.; Elias, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; Lopez-Urias, F.; Crespi, V. H.; Terrones, H.; Terrones, M., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 2013, 13 (8), 3447-54.
15.Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Lu, J.; Huang, B., Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys Chem Chem Phys 2011, 13 (34), 15546-53.
16.Zeng, H.; Liu, G. B.; Dai, J.; Yan, Y.; Zhu, B.; He, R.; Xie, L.; Xu, S.; Chen, X.; Yao, W.; Cui, X., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep 2013, 3, 1608.
17.Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7 (1), 791-7.
18.Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G., Optical Properties of MS2 (M = Mo, W) Inorganic Fullerenelike and Nanotube Material Optical Absorption and Resonance Raman Measurements. Journal of Materials Research 2011, 13 (09), 2412-2417.
19.Ballif, C.; Regula, M.; Schmid, P. E.; Remškar, M.; Sanjinés, R.; Lévy, F., Preparation and characterization of highly oriented, photoconducting WS2 thin films. Applied Physics A Materials Science & Processing 1996, 62 (6), 543-546.
20.Liu, L.; Kumar, S. B.; Ouyang, Y.; Guo, J., Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors. IEEE Transactions on Electron Devices 2011, 58 (9), 3042-3047.
21.Kuru, C.; Choi, D.; Kargar, A.; Liu, C. H.; Yavuz, S.; Choi, C.; Jin, S.; Bandaru, P. R., High-performance flexible hydrogen sensor made of WS(2) nanosheet-Pd nanoparticle composite film. Nanotechnology 2016, 27 (19), 195501.
22.Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S.; Lv, R.; Hayashi, T.; López-Urías, F.; Ghosh, S.; Muchharla, B.; Talapatra, S.; Terrones, H.; Terrones, M., Photosensor Device Based on Few-Layered WS2Films. Advanced Functional Materials 2013, 23 (44), 5511-5517.
23.Guan, H.; Luo, Y.; Chen, C.; Kai, X.; peng, s.; Tang, J.; Lu, H.; Yu, J.; Zhang, J.; Xiao, Y.; Chen, Z., All fiber-optic humidity sensor based on tungsten disulfide (WS2 ). 2016, Th4A.29.
24.Qiu, D.; Lee, D. U.; Lee, K. S.; Pak, S. W.; Kim, E. K., Toward negligible charge loss in charge injection memories based on vertically integrated 2D heterostructures. Nano Research 2016, 9 (8), 2319-2326.
25.Schaller, R. R., Moore''s law: past, present and future. IEEE Spectrum 1997, 34 (6), 52-59.
26.Liu, H.; Neal, A. T.; Ye, P. D., Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6 (10), 8563-9.
27.Yan, R. H.; Ourmazd, A.; Lee, K. F., Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Transactions on Electron Devices 1992, 39 (7), 1704-1710.
28.Frank, D. J.; Taur, Y.; Wong, H. S. P., Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Device Letters 1998, 19 (10), 385-387.
29.Ouyang, Q.; Zeng, S.; Jiang, L.; Hong, L.; Xu, G.; Dinh, X. Q.; Qian, J.; He, S.; Qu, J.; Coquet, P.; Yong, K. T., Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor. Sci Rep 2016, 6, 28190.
30.Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C.; Wong, H. P.; Javey, A., MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354 (6308), 99-102.
31.Liu, X.; Hu, J.; Yue, C.; Della Fera, N.; Ling, Y.; Mao, Z.; Wei, J., High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 2014, 8 (10), 10396-402.
32.Jeon, M. H.; Ahn, C.; Kim, H.; Kim, K. N.; Li, N. T.; Qin, H.; Kim, Y.; Lee, S.; Kim, T.; Yeom, G. Y., Controlled MoS(2) layer etching using CF(4) plasma. Nanotechnology 2015, 26 (35), 355706.
33.Huang, Y.; Wu, J.; Xu, X.; Ho, Y.; Ni, G.; Zou, Q.; Koon, G. K. W.; Zhao, W.; Castro Neto, A. H.; Eda, G.; Shen, C.; Özyilmaz, B., An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Research 2013, 6 (3), 200-207.
34.Withers, F.; Bointon, T. H.; Hudson, D. C.; Craciun, M. F.; Russo, S., Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment. Scientific Reports 2014, 4.
35.Lee, G.-H.; Yu, Y.-J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J., Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Applied Physics Letters 2011, 99 (24), 243114.
36.Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J., Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488 (7413), 627-32.
37.Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J., Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 2010, 5 (10), 722-6.
38.Iqbal, M. W.; Iqbal, M. Z.; Jin, X.; Eom, J.; Hwang, C., Superior characteristics of graphene field effect transistor enclosed by chemical-vapor-deposition-grown hexagonal boron nitride. Journal of Materials Chemistry C 2014, 2 (37), 7776.
39.Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Shehzad, M. A.; Seo, Y.; Park, J. H.; Hwang, C.; Eom, J., High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep 2015, 5, 10699.
40.Late, D. J.; Liu, B.; Matte, H. S. S. R.; Rao, C. N. R.; Dravid, V. P., Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates. Advanced Functional Materials 2012, 22 (9), 1894-1905.
41.Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S., Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4 (5), 2695-700.
42.Molina-Sánchez, A.; Wirtz, L., Phonons in single-layer and few-layer MoS2and WS2. Physical Review B 2011, 84 (15).
43.Sourisseau, C.; Cruege, F.; Fouassier, M.; Alba, M., Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chemical Physics 1991, 150 (2), 281-293.
44.Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T., Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2Monolayer from Chemical Vapor Deposition. Advanced Optical Materials 2014, 2 (2), 131-136.
45.Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C.; Terrones, H.; Terrones, M., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports 2013, 3 (1).
46.Peimyoo, N.; Shang, J.; Cong, C.; Shen, X.; Wu, X.; Yeow, E. K.; Yu, T., Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles. ACS Nano 2013, 7 (12), 10985-94.
47.Mattheiss, L. F., Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. Physical Review B 1973, 8 (8), 3719-3740.
48.Yim, C.; O''Brien, M.; McEvoy, N.; Winters, S.; Mirza, I.; Lunney, J. G.; Duesberg, G. S., Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Applied Physics Letters 2014, 104 (10), 103114.
49.Zhou, L.; Yan, S.; Pan, L.; Wang, X.; Wang, Y.; Shi, Y., A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries. Nano Research 2016, 9 (3), 857-865.
50.Zhou, P.; Xu, Q.; Li, H.; Wang, Y.; Yan, B.; Zhou, Y.; Chen, J.; Zhang, J.; Wang, K., Fabrication of Two-Dimensional Lateral Heterostructures of WS2/WO3⋅H2O Through Selective Oxidation of Monolayer WS2. Angewandte Chemie 2015, 127 (50), 15441-15445.
51.Cui, Y.; Xin, R.; Yu, Z.; Pan, Y.; Ong, Z. Y.; Wei, X.; Wang, J.; Nan, H.; Ni, Z.; Wu, Y.; Chen, T.; Shi, Y.; Wang, B.; Zhang, G.; Zhang, Y. W.; Wang, X., High-Performance Monolayer WS2 Field-Effect Transistors on High-kappa Dielectrics. Adv Mater 2015, 27 (35), 5230-4.
52.Zhang, W.; Huang, Z.; Zhang, W.; Li, Y., Two-dimensional semiconductors with possible high room temperature mobility. Nano Research 2014, 7 (12), 1731-1737.
53.Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J., High performance multilayer MoS2 transistors with scandium contacts. Nano Lett 2013, 13 (1), 100-5.
54.Li, S. L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. W.; Lin, Y. F.; Aparecido-Ferreira, A.; Tsukagoshi, K., Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. Nano Lett 2013, 13 (8), 3546-52.
55.Luo, B.; Liu, J.; Zhu, S. C.; Yi, L., Chromium is proposed as an ideal metal to form contacts with monolayer MoS2 and WS2. Materials Research Express 2015, 2 (10), 106501.
56.Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A., Electrical transport properties of single-layer WS2. ACS Nano 2014, 8 (8), 8174-81.
57.Namgung, S. D.; Yang, S.; Park, K.; Cho, A. J.; Kim, H.; Kwon, J. Y., Influence of post-annealing on the off current of MoS2 field-effect transistors. Nanoscale Res Lett 2015, 10, 62.
58.Chen, M.; Nam, H.; Wi, S.; Ji, L.; Ren, X.; Bian, L.; Lu, S.; Liang, X., Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Applied Physics Letters 2013, 103 (14), 142110.
59.Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S., Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. Journal of Applied Physics 2007, 101 (1), 014507.
60.Bao, W.; Cai, X.; Kim, D.; Sridhara, K.; Fuhrer, M. S., High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Applied Physics Letters 2013, 102 (4), 042104.
61.Yu, Z.; Ong, Z.-Y.; Li, S.; Xu, J.-B.; Zhang, G.; Zhang, Y.-W.; Shi, Y.; Wang, X., Analyzing the Carrier Mobility in Transition-Metal Dichalcogenide MoS2
Field-Effect Transistors. Advanced Functional Materials 2017, 1604093.
62.Kim, K. K.; Hsu, A.; Jia, X.; Kim, S. M.; Shi, Y.; Dresselhaus, M.; Palacios, T.; Kong, J., Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 2012, 6 (10), 8583-90.
63.Park, W.; Park, J.; Jang, J.; Lee, H.; Jeong, H.; Cho, K.; Hong, S.; Lee, T., Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 2013, 24 (9), 095202.
64.Late, D. J.; Liu, B.; Matte, H. S.; Dravid, V. P.; Rao, C. N., Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6 (6), 5635-41.
65.Egginger, M.; Bauer, S.; Schwödiauer, R.; Neugebauer, H.; Sariciftci, N. S., Current versus gate voltage hysteresis in organic field effect transistors. Monatshefte für Chemie - Chemical Monthly 2009, 140 (7), 735-750.
66.Park, Y.; Baac, H. W.; Heo, J.; Yoo, G., Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Applied Physics Letters 2016, 108 (8), 083102.
67.Li, T.; Du, G.; Zhang, B.; Zeng, Z., Scaling behavior of hysteresis in multilayer MoS2 field effect transistors. Applied Physics Letters 2014, 105 (9), 093107.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top