|
[1] Internet of Everything (IoE) Value Index - How Much Value Are Private-Sector Firms Capturing from IoE in 2013? Available: http: //internetofeverything.cisco.com/sites/default/files/ docs/en/ioe-value-index_Whitepaper.pdf, 2013. Accessed: Jul. 21, 2016. [2] P.-H. Lee, M.-J. Shih, G.-Y. Lin, and H.-Y. Wei. Optimal Resource Reservations to Provide Quality-of-Service Guarantee in M2M Communications. In 8th Int. Wireless Commun. and Mobile Comput. Conf. (IWCMC), pages 769–773, Aug. 2012. [3] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. PortilloGuisado, M. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Trans. Ind. Electron., 53(4):1002–1016, Jun. 2006. [4] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020 White Paper. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-vni/mobile-white-paper-c11-520862.html. Access: Jul. 21, 2016. [5] An Introduction to the Internet-of-Things (IoT). Available: http://www.cisco.com/c/dam/en_us/solutions/trends/iot/ introduction_to_IoT_november.pdf. Access: Aug. 09, 2016. [6] A. Osseiran et al. Scenarios for 5G Mobile and Wireless Communications: the Vision of the METIS Project. IEEE Commun. Mag., 52(5):26–35, May 2014. [7] M.-Y. Cheng, G.-Y. Lin, H.-Y. Wei, and AC.-C. Hsu. Overload Control for Machine-Type-Communications in LTE-Advanced System. IEEE Commun. Mag., 50(6):38–45, Jun. 2012. [8] 3GPP TR 36.888 v12.0.0. Study on Provision of Low-cost Machine-Type Communications (MTC) User Equipments (UEs) Based on LTE. Jun. 2013. [9] 3GPP RP-150492. Revised WI: Further LTE Physical Layer Enhancements for MTC. Mar. 2015. [10] 3GPP RP-152284. Revised WI: Narrowband IoT (NB-IoT). Dec. 2015. [11] 3GPP RP-160677. SI: Further Enhancements LTE Device to Device, UE to Network Relays for Wearables. Mar. 2016. [12] 3GPP TR 36.843 v1.2.0. Study of LTE Device to Device Proximity Services; Radio Aspects. Mar. 2014. [13] 3GPP RP-151109. New SI proposal: Feasibility Study on LTE-based V2X Services. Jun. 2015. [14] 3GPP RP-160649. Revised WID: Support for V2V Services Based on LTE Sidelink. Mar. 2016. [15] Y. Mao and Y. Luo and J. Zhang and K. B. Letaief. Energy Harvesting Small Cell Networks: Feasibility, Deployment, and Operation. IEEE Commun. Mag., 53(6):94–101, Jun. 2015. [16] Y. He and X. Cheng and W. Peng and G. L. Stuber. A Survey of Energy Harvesting Communications: Models and Offline Optimal Policies. IEEE Commun. Mag., 53(6):79–85, Jun. 2015. [17] P. Kamalinejad and C. Mahapatra and Z. Sheng and S. Mirabbasi and V. C. M. Leung and Y. L. Guan. Wireless Energy Harvesting for the Internet of Things. IEEE Commun. Mag., 53(6):102–108, Jun. 2015. [18] H.-H. Lin, M.-J. Shih, H.-Y. Wei, and R. Vannithamby. DeepSleep: IEEE 802.11 Enhancement for Energy-Harvesting Machine-to-Machine Communications. Wirel. Netw., 21(2):357–370, Aug. 2014. [19] D. Del Testa, N. Michelusi, and M. Zorzi. Optimal Transmission Policies for Two-User Energy Harvesting Device Networks With Limited State-of-Charge Knowledge. IEEE Trans. Wireless Commun., 15(2):1393–1405, Feb 2016. [20] O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener. Fundamental Limits of Energy Harvesting Communications. IEEE Commun. Mag., 53(4):126–132, Apr. 2015. [21] R. Atallah, M. Khabbaz, and C. Assi. Energy Harvesting in Vehicular Networks: A Contemporary Survey. IEEE Wireless Commun., 23(2):70–77, Apr. 2016. [22] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and K. Huang. Energy Harvesting Wireless Communications: A Review of Recent Advances. IEEE J. Sel. Areas Commun., 33(3):360–381, Mar. 2015. [23] The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1994. Available: http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1994/press.html, 1994. Accessed: Aug. 21, 2016. [24] The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2005. Available: http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2005/press.html, 2005. Accessed: Aug. 21, 2016. [25] The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2007. Available: http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2007/press.html, 2007. Accessed: Aug. 21, 2016. [26] D. Monderer and L. S. Shapley. Potential Games. Games and Economic Behavior, 14(1):124–143, 1996. [27] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson. M2M: From Mobile to Embedded Internet. IEEE Commun. Mag., 49(4):36–43, Apr. 2011. [28] S. Chalasani and J. M. Conrad. A Survey of Energy Harvesting Sources for Embedded Systems. In IEEE SoutheastCon, pages 442–447, Apr. 2008. [29] S. Sudevalayam and P. Kulkarni. Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Commun. Surveys Tuts., 13(3):443–461, Third 2011. [30] J. Nuffer and T. Bein. Applications of Piezoelectric Materials in Transportation Industry. In Global Symp. Innovative Solutions for the Advancement of the Transp. Ind., volume 4, 2006. [31] G. Park, T. Rosing, M. D. Todd, C. R. Farrar, and W. Hodgkiss. Energy Harvesting for Structural Health Monitoring Sensor Networks. J. of Infrastructure Syst., 14(1):64–79, 2008. [32] 3GPP TS 22.368 v11.2.0. Service Requirements for Machine-Type Communications (MTC). Jun. 2011. [33] 3GPP TR 37.868 v11.0.0. Study on RAN Improvements for Machine-type Communications. Sept. 2011. [34] S.-Y. Lien, K.-C. Chen, and Y. Lin. Toward Ubiquitous Massive Accesses in 3GPP Machine-to-Machine Communications. IEEE Commun. Mag., 49(4):66–74, Apr. 2011. [35] W. K. G. Seah, Z. A. Eu, and H.-P. Tan. Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) - Survey and Challenges. In 1st Int. Conf. Wireless Commun., Veh. Technol., Inform. Theory and Aerosp. Electron. Syst. Technol. (Wireless VITAE), pages 1–5, May 2009. [36] H.-P. Tan, P. W. Q. Lee, W. K. G. Seah, and Z. A. Eu. Impact of Power Control in Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) for Railroad Health Monitoring. In IEEE Int. Conf. Advanced Inform. Netw. and Appl. Workshops (WAINA), pages 804–809, May 2009. [37] D. Niyato, E. Hossain, M. M. Rashid, and V. K. Bhargava. Wireless Sensor Networks with Energy Harvesting Technologies: A Game-Theoretic Approach to Optimal Energy Management. IEEE Wireless Commun., 14(4):90–96, Aug. 2007. [38] H.-H. Lin, H.-Y. Wei, and R. Vannithamby. DeepSleep: IEEE 802.11 Enhancement for Energy-Harvesting Machine-to-Machine Communications. In IEEE GLOBECOM, pages 5231–5236, 2012. [39] Z. A. Eu, H.-P. Tan, and W. K. G. Seah. Design and Performance Analysis of MAC Schemes for Wireless Sensor Networks Powered by Ambient Energy Harvesting. Ad Hoc Netw., 9(3):300–323, 2011. [40] M. Tacca, P. Monti, and A. Fumagalli. Cooperative and Reliable ARQ Protocols for Energy Harvesting Wireless Sensor Nodes. IEEE Trans. Wireless Commun., 6(7):2519–2529, 2007. [41] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A Close Examination of Performance and Power Characteristics of 4G LTE Networks. In Proc. 10th Int. Conf. Mobile Syst., Appl., and Services, pages 225–238. ACM, 2012. [42] 3GPP TS 36.321 v10.2.0. E-UTRA Medium Access Control (MAC) Protocol Specification. Jun. 2011. [43] J. Lei, R. Yates, and L. Greenstein. A Generic Model for Optimizing Single-Hop Transmission Policy of Replenishable Sensors. IEEE Trans. Wireless Commun., 8(2):547 –551, Feb. 2009. [44] N. Michelusi, K. Stamatiou, and M. Zorzi. On Optimal Transmission Policies for Energy Harvesting Devices. In 2012 Inform. Theory and Appl. Workshop (ITA), pages 249–254. IEEE, Feb. 2012. [45] A. Maafi and A. Adane. Analysis of the Performances of the First-Order Two-State Markov Model Using Solar Radiation Properties. Renewable Energy, 13(2):175–193, 1998. [46] V. S. Rao, S. N. Akshay Uttama Nambi, R. V. Prasad, and I. Niemegeers. On Systems Generating Context Triggers Through Rnergy Harvesting. IEEE Commun. Mag., 52(6):70–77, Jun. 2014. [47] A. Decker. Solar Energy Harvesting for Autonomous Field Devices. IET Wireless Sensor Syst., 4(1):1–8, Mar. 2014. [48] D. Di Zenobio, K. Steenhaut, M. Celidonio, E. Sergio, and Y. Verbelen. A Self-Powered Wireless Sensor for Water/Gas Metering Systems. In IEEE Int. Conf. Commun. (ICC), pages 5772–5776, Jun. 2015. [49] C. Alippi, R. Camplani, C. Galperti, and M. Roveri. A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors J., 11(1):45–55, Jan. 2011. [50] M. Grudén, M. Hinnemo, D. Dancila, F. Zherdev, N. Edvinsson, K. Brunberg, L. Andersson, R. Bystrom, and A. Rydberg. Field Operational Testing for Safety Improvement of Freight Trains Using Wireless Monitoring by Sensor Network. IET Wireless Sensor Syst., 4(2):54–60, Jun. 2014. [51] J. Gong, S. Zhou, Z. Niu, and J. S. Thompson. Energy-Aware Resource Allocation for Energy Harvesting Wireless Communication Systems. In IEEE 77th Veh. Techno. Conf. (VTC Spring), pages 1–5, Jun. 2013. [52] D. W. K. Ng, E. S. Lo, and R. Schober. Energy-Efficient Resource Allocation in OFDMA Systems with Hybrid Energy Harvesting Base Station. IEEE Trans. Wireless Commun., 12(7):3412–3427, Jul. 2013. [53] N. Tekbiyik, T. Girici, E. Uysal-Biyikoglu, and K. Leblebicioglu. Proportional Fair Resource Allocation on an Energy Harvesting Downlink. IEEE Trans. Wireless Commun., 12(4):1699–1711, Apr. 2013. [54] D. Gunduz, K. Stamatiou, N. Michelusi, and M. Zorzi. Designing Intelligent Energy Harvesting Communication Systems. IEEE Commun. Mag., 52(1):210–216, Jan. 2014. [55] A. Laya, L. Alonso, and J. Alonso-Zarate. Is the Random Access Channel of LTE and LTE-A Suitable for M2M Communications? A Survey of Alternatives. IEEE Commun. Surveys Tuts., 16(1):4–16, First 2014. [56] C.-C. Kuan, G.-Y. Lin, H.-Y. Wei, and R. Vannithamby. Reliable Multicast and Broadcast Mechanisms for Energy-Harvesting Devices. IEEE Trans. Veh. Technol., 63(4):1813–1826, May 2014. [57] S. Luo, R. Zhang, and T. J. Lim. Optimal Save-Then-Transmit Protocol for Energy Harvesting Wireless Transmitters. IEEE Trans. Wireless Commun., 12(3):1196–1207, Mar. 2013. [58] F. Iannello, O. Simeone, and U. Spagnolini. Medium Access Control Protocols for Wireless Sensor Networks with Energy Harvesting. IEEE Trans. Commun., 60(5):1381–1389, May 2012. [59] O. Briante, A. M. Mandalari, A. Molinaro, G. Ruggeri, J. Alonso-Zarate, and F. Vazquez-Gallego. Duty-Cycle Optimization for Machine-to-Machine Area Networks Based on Frame Slotted-ALOHA with Energy Harvesting Capabilities. In Proc. 20th European Wireless Conf., pages 1–6, May 2014. [60] M.-J. Shih, Y.-C. Pang, G.-Y. Lin, H.-Y. Wei, and R. Vannithamby. Performance Evaluation for Energy-Harvesting Machine-Type Communication in LTE-A System. In IEEE 79th Veh. Technol. Conf. (VTC Spring), the 2nd Int. Workshop 5G Mobile and Wireless Commun. Syst. for 2020 and Beyond (MWC2020), pages 1–5, May 2014. [61] 3GPP TR 36.812 v11.0.0. Feasibility Study for Further Advancements for E-UTRA (LTE-Advanced). Sept. 2012. [62] G.-Y. Lin, S.-R. Chang, and H.-Y. Wei. Estimation and Adaptation for Bursty LTE Random Access. IEEE Trans. Veh. Technol., 65(4):2560–2577, Apr. 2016. [63] G.-Y. Lin and H.-Y. Wei. Auction-Based Random Access Load Control for Time-Dependent Machine-to-Machine Communications. IEEE Internet of Things J., 3(5):658–672, Oct 2016. [64] Y.-C. Pang, S.-L. Chao, G.-Y. Lin, and H.-Y. Wei. Network Access for M2M/H2H Hybrid Systems: A Game Theoretic Approach. IEEE Commun. Lett., 18(5):845–848, Jun. 2014. [65] METIS Official Website. Available: https://www.metis2020.com. Accessed: Jul. 21, 2016. [66] R. Ratasuk, A. Prasad, Z. Li, A. Ghosh, and M. Uusitalo. Recent Advancements in M2M Communications in 4G Networks and Evolution Towards 5G. In 18th Innovations in Clouds, Internet, and Netw. Conf. (ICIN), pages 52–57, Feb. 2015. [67] R. Liu, W. Wu, H. Zhu, and D. Yang. M2M-Oriented QoS Categorization in Cellular Network. In 7th WiCOM, pages 1–5, Sept. 2011. [68] A. Aijaz, M. Tshangini, M.R. Nakhai, X. Chu, and A-H. Aghvami. Energy-Efficient Uplink Resource Allocation in LTE Networks With M2M/H2H Co-Existence Under Statistical QoS Guarantees. IEEE Trans. Commun., 62(7):2353–2365, Jul. 2014. [69] H. S. Dhillon, H. C. Huang, H. Viswanathan, and R. A. Valenzuela. Power-Efficient System Design for Cellular-Based Machine-to-Machine Communications. IEEE Trans. Wireless Commun., 12(11):5740–5753, Nov. 2013. [70] A. Rajandekar and B. Sikdar. A Survey of MAC Layer Issues and Protocols for Machine-to-Machine Communications. IEEE Internet of Things J., 2(2):175–186, Apr. 2015. [71] 3GPP RP-151621. New Work Item: NarrowBand IOT (NB-IOT). Sept. 2015. [72] X. Cheng, L. Yang, and X. Shen. D2D for Intelligent Transportation Systems: A Feasibility Study. IEEE Trans. Intell. Transp. Syst., 16(4):1784–1793, Aug. 2015. [73] Z. Wang and V. W. S. Wong. Optimal Access Class Barring for Stationary Machine Type Communication Devices With Timing Advance Information. IEEE Trans. Wireless Commun., 14(10):5374–5387, Oct. 2015. [74] R.-G. Cheng, J. Chen, D.-W. Chen, and C.-H. Wei. Modeling and Analysis of an Extended Access Barring Algorithm for Machine-Type Communications in LTE-A Networks. IEEE Trans. Wireless Commun., 14(6):2956–2968, Jun. 2015. [75] C.-Y. Oh, D. Hwang, and T.-J. Lee. Joint Access Control and Resource Allocation for Concurrent and Massive Access of M2M Devices. IEEE Trans. Wireless Commun., 14(8):4182–4192, Aug. 2015. [76] K.-D. Lee, S. Kim, and B. Yi. Throughput Comparison of Random Access Methods for M2M Service Over LTE Networks. In IEEE GLOBECOM Wkshps, pages 373–377, Dec. 2011. [77] D. Niyato, P. Wang, and D. I. Kim. Performance Modeling and Analysis of Heterogeneous Machine Type Communications. IEEE Trans. Wireless Commun., 13(5):2836–2849, May 2014. [78] M.-J. Shih, C.-Y. Yeh, K. D. Huang, and H.-Y. Wei. Energy-Aware Waiting-Line based Resource Allocation in Cellular Network with M2M/H2H Co-existence. In IEEE Int. Conf. Commun. (ICC), pages 2979–2984, Jun. 2015. [79] Charles A. Holt Jr. and R. Sherman. Waiting-Line Auctions. The Journal of Political Economy, pages 280–294, 1982. [80] G. Wu, P. Ren, and C. Zhang. A Waiting-Time Auction Based Dynamic Spectrum Allocation Algorithm in Cognitive Radio Networks. In IEEE GLOBECOM, pages 1–5, Dec 2011. [81] C.-H. Wei, G. Bianchi, and R.-G. Cheng. Modeling and Analysis of Random Access Channels With Bursty Arrivals in OFDMA Wireless Networks. IEEE Trans. Wireless Commun., 14(4):1940–1953, Apr. 2015. [82] Y. Narahari, D. Garg, R. Narayanam, and H. Prakash. Game Theoretic Problems in Network Economics and Mechanism Design Solutions. Springer-Verlag London, 1999. [83] C.-H. Yu, K. Doppler, C. B. Ribeiro, and O. Tirkkonen. Resource Sharing Optimization for Device-to-Device Communication Underlaying Cellular Networks. IEEE Trans. Wireless Commun., 10(8):2752–2763, Aug. 2011. [84] D. Feng, L. Lu, Y.-W. Yi, G. Y. Li, G. Feng, and S. Li. Device-to-Device Communications Underlaying Cellular Networks. IEEE Trans. on Commun., 61(8):3541–3551, Aug. 2013. [85] S.-L. Chao, H.-Y. Lee, C.-C. Chou, and H.-Y. Wei. Bio-Inspired Proximity Discovery and Synchronization for D2D Communications. IEEE Commun. Lett., 17(12):2300–2303, Dec. 2013. [86] J. Mo, H.-S. W. So, and J. Walrand. Comparison of Multichannel MAC Protocols. IEEE Trans. Mobile Comput., 7(1):50–65, 2008. [87] J. Zhang, G. Zhou, C. Huang, S. H. Son, and J. A. Stankovic. TMMAC: An Energy Efficient Multi-Channel MAC Protocol for Ad Hoc Networks. In IEEE Int. Conf. Comm. (ICC), pages 3554–3561, Aug. 2007. [88] K. Doppler, M. Rinne, C. Wijting, C. B Ribeiro, and K. Hugl. Device-to-Device Communication as an Underlay to LTE-advanced Networks. IEEE Commun. Mag., 47(12):42–49, Dec. 2009. [89] Next Generation Mobile Networks (NGMN) Alliance. NGMN 5G White Paper. Available: https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf, 2015. Accessed: Jul. 21, 2016. [90] Z. Zhou, M. Dong, K. Ota, J. Wu, and T. Sato. Energy Efficiency and Spectral Efficiency Tradeoff in Device-to-Device (D2D) Communications. IEEE Wireless Commun. Lett., 3(5):485–488, Oct. 2014. [91] M. Hasan, E. Hossain, and D. I. Kim. Resource Allocation Under Channel Uncertainties for Relay-Aided Device-to-Device Communication Underlaying LTE-A Cellular Networks. IEEE Trans. Wireless Commun., 13(4):2322–2338, Apr. 2014. [92] Q. Ye, M. Al-Shalash, C. Caramanis, and J. G. Andrews. Distributed Resource Allocation in Device-to-Device Enhanced Cellular Networks. IEEE Trans. Commun., 63(2):441–454, Feb. 2015. [93] C.-W. Yeh, M.-J. Shih, G.-Y. Lin, and H.-Y. Wei. LTE-D Broadcast with Distributed Interference-aware D2D Resource Allocation. In 7th Int. Conf. Ubiquitous and Future Networks (ICUFN), pages 165–170, Jul. 2015. [94] M.-J. Shih, G.-Y. Lin, and H.-Y. Wei. A Distributed Multi-Channel Feedbackless MAC Protocol for D2D Broadcast Communications. IEEE Wireless Commun. Lett., 4(1):102-105, Feb. 2015. [95] 3GPP TR 36.211 v13.1.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation. Mar. 2016.
|