跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施美如
研究生(外文):Mei-Ju Shih
論文名稱:針對能量收集、低成本與緊急任務性、以及鄰近性物聯網情境之蜂巢式無線網路資源管理研究
論文名稱(外文):Cellular Resource Management for Three Internet-of-Things Scenarios: Energy-Harvesting, Low-Cost & Mission-Critical, and Proximity-Based
指導教授:魏宏宇魏宏宇引用關係
指導教授(外文):Hung Yu Wei
口試委員:張時中曾煜棋王蒞君方凱田林甫俊許健平洪樂文
口試委員(外文):Shi-Chung ChangYu-Chee TsengLi-Chun WangKai-Ten FengFuchun Joseph LinJang-Ping SheuYao-Win Peter Hong
口試日期:2016-09-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:144
中文關鍵詞:物聯網機器對機器通訊裝置對裝置通訊資源分配能量收集隨機存取通道賽局理論
外文關鍵詞:IoTM2MD2Dresource allocationenergy-harvestingRACHgame theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在次世代無線通訊網路中,物聯網(又稱為機器對機器通訊或機器類型通訊) 已經吸引大量關注。更具體地說,有鑑於第五代蜂巢式網路的設計目標:超行動寬頻、超可靠機器類通訊和大量機器類通訊,物聯網在第五代蜂巢式網路扮演關鍵角色。另一方面,伴隨著資料流量的需求增加,以及無線資源缺乏,無線電資源管理深具挑戰卻又十分重要。由於物聯網根據不同服務會有不同需求,單一資源管理解決方案很難滿足所有物聯網情境。在本篇博士論文,我們著重於在蜂巢式網路下的物聯網資源管理之研究,並以三大物聯網特色為目標:具能量收集性的物聯網、低成本和緊急任務性共存的物聯網、以及具鄰近性的物聯網, 根據不同物聯網特色提出妥善資源分配方法以解決網路擁塞和減少資源碰撞的現象。

為了處理物聯網在蜂巢式網路下的資源管理,我們研究兩個基本的物聯網問題:網路擁塞和減少資源碰撞。這些問題起因於大量連網裝置。例如:在傳統以上行和下行鏈結為主的蜂巢式網路中,物聯網的資料流量以上行為主。因此,我們針對具能量收集性的物聯網、以及低成本和緊急任務性共存的物聯網,進一步探討網路接取程序和上行資料傳輸。近來,隨著邊緣鏈結通訊(又稱為直接通訊、裝置對裝置通訊) 興起,具鄰近性的物聯網將得以實現,裝置們可以彼此交換區域資訊而不需要透過基地台。因此,我們也探討在具鄰近性物聯網中的裝置對裝置通訊資源分配議題,以減少資源碰撞。值得一提的是,裝置對裝置通訊可以重複使用上行鏈結的資源。

針對物聯網之上行資源管理,我們首先考慮物聯網裝置具有能量收集性,代表這些裝置可以自行擷取環境中的能量以供自行運作而不需要人為介入。針對被安置在難以到達的物聯網裝置、以及為了節省成本,具能量收集性的物聯網情境變得愈來愈廣泛被應用。我們根據先進長期演進技術系統,針對上行傳輸程序建立實際的模擬平台,並進而鑽研網路接取程序。根據隨機接取通道資源如何被選擇及運作,我們提出具能量感知的推式、拉式及混合式設計方案,並和現行的長期演進技術系統比較。我們進而鑽研這三項設計方案的優缺點。以具能量收集性的物聯網來說,我們建議具能量感知性的設計是必備。在推式設計中,當裝置規模超過上限時,隨機接取通道資源碰撞、延遲和能量效率等表現開始變差。相對地,拉式設計總能達到最大吞吐量與能量效率,而代價是幾近線性成長的延遲和排程信令成本。然而,具有自適性網路存取和裝置數量估測的混合式設計具有更大的彈性,在不同資料流量和能量收集率的情境下,皆能達到最大吞吐量、能量效率、以及合宜的延遲。

接著,我們針對低成本物聯網、緊急任務性物聯網和人與人間通訊共存的情境下進行上行專屬資源分配的研究。我們透過裝置在意能量程度為裝置差異性建立模型,其中,低成本物聯網裝置具有較低能量感知,緊急任務型物聯網裝置具有較高能量感知。我們設計一套間接機制,其中包含以排隊時間為主的資源拍賣和直接存取資源的付費。透過貝氏史塔克伯格賽局,此具有優先性的資源分配框架得以被分析,並能達到唯一貝氏奈許均衡以及區域間並以排隊時間為基礎的誠實告知偏好之性質。在機制中,貝氏奈許誘因相容性、期中效益、期中個體理性以及弱收支平衡的性質得以成立。與長期演進技術標準相比,此架構除了引入基地台宣布資訊,並未增加額外的信令交換。更值得一提的是,針對緊急任務性物聯網而設計的付費資源池將可以作為營運商的財務補償。營運商可以根據機器對機器間通訊與人對人間通訊的流量和資源池分割,設計動態的價格。

最後一部分的研究是物聯網邊緣鏈結資源管理。我們根據第三代合作夥伴計畫的標準制定流程和限制進而設計裝置對裝置通訊的資源分配機制以實現具鄰近性的物聯網。根據沒有回饋訊息和半雙工傳輸模式的假設,我們設計排程指派和資料資源的運作機制,以期能在基地台失去功能時,能最小化資源碰撞。針對排程指派資源池與資料資源池間的對應關係,我們提出兩種強化性機制:顯式和隱式。這兩個機制採用資源感測結果,就資料碰撞率與吞吐量而言,表現優於第十二版裝置對裝置通訊之模式二資源分配。強化性顯式機制較近似於第十二版模式二,但能透過資源跳躍進而避免排程指派的碰撞。強化性隱式機制透過排程指派許可控制,進而能在短時間內達到零資料碰撞;然而,成功的鄰近性物聯網裝置數量受限於通道數目。這三種機制的比較結果得以提供車對車間通訊和加強型裝置對裝置間通訊作為研究基礎。

總結,本博士論文期能為客製化物聯網情境之上行鏈結與邊緣鏈結資源管理注入豐富研究能量,包含:針對能量收集物聯網的網路存取設計、針對低成本和緊急任務性物聯網的上行鏈結資源管理、以及針對鄰近性物聯網的邊緣鏈結自主性資源選擇。
Internet-of-Things (IoT), also known as Machine-to-Machine (M2M) communications and Machine-Type Communication (MTC), has attracted much attention in the next-generation wireless communications network. Specifically, in view of 5G targets, i.e., extreme mobile broadband (eMBB), ultrareliable MTC (uMTC) and massive MTC (mMTC), “IoT” has played a key role in the evolution of the 5G cellular network. On the other hand, with increasing data traffic demand and deficient wireless resources, radio resource management is challenging and of great importance. Since IoT has varied requirements
according to needed services, a unitary solution of resource management may not be appropriate for all IoT scenarios. In this dissertation, we investigated IoT resource management in the cellular network, focusing on
three IoT features: energy-harvesting IoT, low-cost and mission-critical IoT, and proximity-based IoT.

To review IoT cellular resource management, we investigated two fundamental IoT problems: network congestion and collision minimization. Such problems are caused from massive numbers of devices. For example, in a traditional uplink/downlink cellular network, IoT data traffic is mostly uplink-oriented. Therefore, we first studied the network entry procedure and uplink data transmission for energy-harvesting IoT and low-cost and mission-critical IoT. Recently, with the advent of sidelink (direct link) communications, also known as Device-to-Device (D2D) communications, proximity-based IoT allows devices to exchange local information without bypassing the evolved NodeB (eNB). Thus, we also explore the D2D resource allocation for collision minimization problem in proximity-based IoT. It is worthy to note that D2D communications can reuse uplink resources.

For IoT uplink resource management, we first considered that IoT devices are energy-harvesting, which means they can harvest ambient energy on their own and operate without human intervention. This scenario becomes more popular for IoT devices deployed in places hard to access and for the purpose of cost saving. Based on Long-Term Evolution-Advanced (LTE-A) systems, we built a practical simulation platform for an uplink procedure and studied the network entry procedure. Compared to the naïve LTE scheme, energy-aware push-based, pull-based, and hybrid schemes are further proposed based upon how the Random Access CHannel (RACH) resources are selected and operated. Energy-aware mechanisms are recommended for energy-harvesting IoT. In a push-based scheme, performance such as RACH collision, delay and energy efficiency begins to degrade when the device scalability exceeds an upper bound. In contrast, a pull-based scheme achieves its maximal throughput and energy efficiency at the cost of almost linearly increasing delay and schedule signaling cost. Instead, the hybrid scheme, with adaptive network access and estimation of device number, is more flexible. Thus, the hybrid scheme can achieve energy efficiency, maximal throughput and adequate delay across different traffic loads and energy-harvesting rates. Afterwards, we studied the uplink dedicated resource allocation for the low-cost and mission-critical IoT co-existing with Human-to-Human (H2H) communications. We modeled the device heterogeneity by energy awareness levels, i.e., low-cost IoT devices with low energy awareness, and mission-critical IoT devices with high energy awareness. An indirect mechanism was designed with the waiting-time auction and direct access price. This prioritized resource allocation framework was analyzed by the Bayesian Stackelberg game, and achieved unique Bayesian Nash equilibrium, and interregional and waiting-time-based truth-telling. Bayesian Nash incentive compatibility, interim efficiency, interim individual rationality, and weakly budget balance are maintained with this mechanism. Except for the eNB’s announcement, the framework does not introduce extra signaling exchange compared to the LTE standard. What’s more, the design of a price-based resource pool for mission-critical IoT compensates the operator financially. An operator can design dynamic prices according to M2M/H2H traffic loads and resource pool partitions.

Finally, for IoT sidelink resource management, we designed D2D resource allocation schemes following the standardization progress and constraints in 3rd Generation Partnership Project (3GPP) to realize the proximity-based IoT scenario. Based on an assumption of no feedback and half-duplex mode, we designed the operation of Scheduling Assignment (SA) and data resources, in order to achieve collision minimization when the eNB is out of function. According to whether the SA pool is mapped to the data resource pool, we propose two enhanced schemes: explicit and implicit. These approaches, utilizing the sensing results, outperform Rel-12 Mode 2 in terms of data collision probability and throughput. The enhanced explicit approach, similar to Rel-12 Mode 2, avoids SA collisions by resource hopping. The implicit approach can reach data collision free in short iterations via SA admission control, while the amount of successful proximity-based IoT devices is restricted by the channel number. A comparison of the three schemes are provided, which serves as the foundation for the future standard development such as Vehicle-to-Vehicle (V2V) communications and D2D enhancement.

To sum up, this dissertation provides abundant research on uplink and sidelink resource allocation for customized IoT scenarios: a network entry design for energy-harvesting IoT, an uplink resource management for low-cost and mission-critical IoT, and a sidelink autonomous resource selection for proximity-based IoT.
口試委員會審定書 i
致謝 iii
中文摘要 v
Abstract vii
Contents xi
List of Figures xvii
List of Tables xxi
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissertation Outline . . . . . . . . . . . . . . . 3
1.3 Contribution of Each Chapter . . . . . . . . . . . 5
1.3.1 Chapter 2: Energy-Harvesting IoT —
Performance Evaluation and Energy-Aware Parameter Design for LTE-A Network Access . . . . . . . . . . . . . . . 5
1.3.2 Chapter 3: Energy-Harvesting IoT —
Three Energy-Aware Paradigms in Cellular IoT Access: Push-Based, Pull-Based, and Hybrid Schemes . . . . . . 6
1.3.3 Chapter 4: Low-Cost & Mission-Critical IoT —
To Wait or To Pay: A Game Theoretic Mechanism for Uplink
Resource Allocation . . . . . . . . . . . . . . . . . . 7
1.3.4 Chapter 5: Proximity-Based IoT —
An Implicit Distributed Multi-Channel Feedbackless MAC Protocol for D2D Broadcast Communications . . . . . . . 7
1.3.5 Chapter 6: Proximity-Based IoT —
UE Autonomous Resource Selection for D2D Communications:
Rel-12 Mode 2, Explicit, and Implicit Approaches . . . 8
1.4 Preliminaries . . . . . . . . . . . . . . . . . . . 9
1.4.1 Internet-of-Things (IoT) . . . . . . . . . . . . 9
1.4.2 Energy-Harvesting Technology . . . . . . . . . . 11
1.4.3 Game Theory . . . . . . . . . . . . . . . . . . 13
2 Energy-Harvesting IoT —
Performance Evaluation and Energy-Aware Parameter Design for LTE-A Network Access 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . 19
2.2 Related Work . . . . . . . . . . . . . . . . . . . 20
2.3 System Description . . . . . . . . . . . . . . . . 22
2.4 Evaluation Methodology . . . . . . . . . . . . . . 24
2.4.1 Energy Harvesting Model and Traffic Model . . . 24
2.4.2 Naïve LTE-A Scheme . . . . . . . . . . . . . . . 25
2.4.3 Energy-Aware LTE-A Scheme . . . . . . . . . . . 26
2.4.4 Simulation Setting . . . . . . . . . . . . . . . 26
2.5 Performance Evaluation . . . . . . . . . . . . . . 28
2.6 Summary . . . . . . . . . . . . . . . . . . . . . 30
3 Energy-Harvesting IoT —
Three Energy-Aware Paradigms in Cellular IoT Access: Push-Based, Pull-Based, and Hybrid Schemes 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . 33
3.2 Related Work . . . . . . . . . . . . . . . . . . . 35
3.2.1 Downlink Transmission in Energy-Harvesting Cellular Communications . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Uplink Transmission Protocols for Energy-Harvesting M2M Communications . . . . . . . . . . . . . . . . . . 37
3.3 Energy-Harvesting M2M in an LTE Uplink System . . 39
3.3.1 RACH Network Entry in an LTE Cellular System . . 40
3.3.2 Energy-Harvesting Model . . . . . . . . . . . . 41
3.3.3 Traffic Model . . . . . . . . . . . . . . . . . 43
3.4 Two Paradigms for Energy-Harvesting IoT/M2M Network Access . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Push-Based Scheme . . . . . . . . . . . . . . . 45
3.4.2 Pull-based Scheme . . . . . . . . . . . . . . . 45
3.5 Performance Evaluation . . . . . . . . . . . . . . 47
3.5.1 Simulation Platform . . . . . . . . . . . . . . 47
3.5.2 Energy-Awareness in the Push-Based Scheme . . . 48
3.5.3 The Push-Based Scheme vs. the Pull-Based Scheme: Throughput, Delay and Energy Efficiency . . . . . . . 49
3.6 Proposed Hybrid Scheme for Energy-Harvesting IoT/M2M Network Access 50
3.6.1 Hybrid Scheme . . . . . . . . . . . . . . . . . 50
3.6.2 Hybrid Scheme: Delay . . . . . . . . . . . . . . 52
3.7 Summary . . . . . . . . . . . . . . . . . . . . . 56
4 Low-Cost & Mission-Critical IoT —
To Wait or To Pay: A Game Theoretic Mechanism for Uplink Resource Allocation 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . 57
4.2 System Model . . . . . . . . . . . . . . . . . . . 62
4.2.1 Problem Statement . . . . . . . . . . . . . . . 62
4.2.2 Proposed Prioritized Resource Allocation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Problem Formulation . . . . . . . . . . . . . . . 65
4.3.1 Stackelberg Game with Incomplete Information . . 65
4.3.2 Knowledge of Information . . . . . . . . . . . . 66
4.3.3 The eNB’s Payoff . . . . . . . . . . . . . . . . 66
4.3.4 M2M Devices’ Payoff . . . . . . . . . . . . . . 67
4.4 Backward Induction of Waiting-Time-Based Bayesian Stackelberg Game . . . . . . . . . . . . . . . . . . . 69
4.4.1 Followers’ Game . . . . . . . . . . . . . . . . 69
4.4.2 Leader’s Game . . . . . . . . . . . . . . . . . 78
4.4.3 Properties . . . . . . . . . . . . . . . . . . . 81
4.5 Numerical Analysis . . . . . . . . . . . . . . . . 86
4.6 Summary . . . . . . . . . . . . . . . . . . . . . 91
5 Proximity-Based IoT —
An Implicit Distributed Multi-Channel Feedbackless MAC Protocol for D2D Broadcast Communications 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . 95
5.2 Distributed Multi-Channel Protocol . . . . . . . . 97
5.3 Evaluation and Analysis . . . . . . . . . . . . . 101
5.4 Summary . . . . . . . . . . . . . . . . . . . . . 105
6 Proximity-Based IoT —
UE Autonomous Resource Selection for D2D Communications: Rel-12 Mode 2, Explicit, and Implicit Approaches 107
6.1 Introduction . . . . . . . . . . . . . . . . . . 107
6.2 System Model . . . . . . . . . . . . . . . . . . 109
6.2.1 Scenario . . . . . . . . . . . . . . . . . . . 109
6.2.2 Resource Pool Configuration . . . . . . . . . . 110
6.2.3 Rel-12 D2D Mode 2 Communications . . . . . . . 110
6.2.4 Problem Statement . . . . . . . . . . . . . . . 112
6.3 Proposed UE Autonomous Resource Selection . . . . 112
6.3.1 Enhanced Explicit Approach . . . . . . . . . . 113
6.3.2 Enhanced Implicit Approach . . . . . . . . . . 115
6.4 Performance Evaluation . . . . . . . . . . . . . 119
6.4.1 Simulation methodology . . . . . . . . . . . . 119
6.4.2 Simulation Result . . . . . . . . . . . . . . . 119
6.5 Summary . . . . . . . . . . . . . . . . . . . . . 123
7 Conclusion 125
Bibliography 129
Publication List 141
[1] Internet of Everything (IoE) Value Index - How Much Value Are Private-Sector Firms Capturing from IoE in 2013? Available: http: //internetofeverything.cisco.com/sites/default/files/ docs/en/ioe-value-index_Whitepaper.pdf, 2013. Accessed: Jul. 21, 2016.
[2] P.-H. Lee, M.-J. Shih, G.-Y. Lin, and H.-Y. Wei. Optimal Resource Reservations to Provide Quality-of-Service Guarantee in M2M Communications. In 8th Int. Wireless Commun. and Mobile Comput. Conf. (IWCMC), pages 769–773, Aug. 2012.
[3] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. PortilloGuisado, M. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso. Power-Electronic Systems for
the Grid Integration of Renewable Energy Sources: A Survey. IEEE Trans. Ind. Electron., 53(4):1002–1016, Jun. 2006.
[4] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020 White Paper. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-vni/mobile-white-paper-c11-520862.html. Access: Jul. 21, 2016.
[5] An Introduction to the Internet-of-Things (IoT). Available: http://www.cisco.com/c/dam/en_us/solutions/trends/iot/
introduction_to_IoT_november.pdf. Access: Aug. 09, 2016.
[6] A. Osseiran et al. Scenarios for 5G Mobile and Wireless Communications: the Vision of the METIS Project. IEEE Commun. Mag., 52(5):26–35, May 2014.
[7] M.-Y. Cheng, G.-Y. Lin, H.-Y. Wei, and AC.-C. Hsu. Overload Control for Machine-Type-Communications in LTE-Advanced System. IEEE Commun. Mag., 50(6):38–45, Jun. 2012.
[8] 3GPP TR 36.888 v12.0.0. Study on Provision of Low-cost Machine-Type Communications (MTC) User Equipments (UEs) Based on LTE. Jun. 2013.
[9] 3GPP RP-150492. Revised WI: Further LTE Physical Layer Enhancements for MTC. Mar. 2015.
[10] 3GPP RP-152284. Revised WI: Narrowband IoT (NB-IoT). Dec. 2015.
[11] 3GPP RP-160677. SI: Further Enhancements LTE Device to Device, UE to Network Relays for Wearables. Mar. 2016.
[12] 3GPP TR 36.843 v1.2.0. Study of LTE Device to Device Proximity Services; Radio Aspects. Mar. 2014.
[13] 3GPP RP-151109. New SI proposal: Feasibility Study on LTE-based V2X Services. Jun. 2015.
[14] 3GPP RP-160649. Revised WID: Support for V2V Services Based on LTE Sidelink. Mar. 2016.
[15] Y. Mao and Y. Luo and J. Zhang and K. B. Letaief. Energy Harvesting Small Cell Networks: Feasibility, Deployment, and Operation. IEEE Commun. Mag., 53(6):94–101, Jun. 2015.
[16] Y. He and X. Cheng and W. Peng and G. L. Stuber. A Survey of Energy Harvesting Communications: Models and Offline Optimal Policies. IEEE Commun. Mag., 53(6):79–85, Jun. 2015.
[17] P. Kamalinejad and C. Mahapatra and Z. Sheng and S. Mirabbasi and V. C. M. Leung and Y. L. Guan. Wireless Energy Harvesting for the Internet of Things. IEEE Commun. Mag., 53(6):102–108, Jun. 2015.
[18] H.-H. Lin, M.-J. Shih, H.-Y. Wei, and R. Vannithamby. DeepSleep: IEEE 802.11 Enhancement for Energy-Harvesting Machine-to-Machine Communications. Wirel. Netw., 21(2):357–370, Aug. 2014.
[19] D. Del Testa, N. Michelusi, and M. Zorzi. Optimal Transmission Policies for Two-User Energy Harvesting Device Networks With Limited State-of-Charge Knowledge.
IEEE Trans. Wireless Commun., 15(2):1393–1405, Feb 2016.
[20] O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener. Fundamental Limits of Energy Harvesting Communications. IEEE Commun. Mag., 53(4):126–132, Apr. 2015.
[21] R. Atallah, M. Khabbaz, and C. Assi. Energy Harvesting in Vehicular Networks: A Contemporary Survey. IEEE Wireless Commun., 23(2):70–77, Apr. 2016.
[22] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and K. Huang. Energy Harvesting Wireless Communications: A Review of Recent Advances. IEEE J. Sel. Areas Commun., 33(3):360–381, Mar. 2015.
[23] The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1994. Available: http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1994/press.html, 1994. Accessed: Aug. 21, 2016.
[24] The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2005. Available: http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2005/press.html, 2005. Accessed: Aug. 21, 2016.
[25] The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2007. Available: http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2007/press.html, 2007. Accessed: Aug. 21, 2016.
[26] D. Monderer and L. S. Shapley. Potential Games. Games and Economic Behavior, 14(1):124–143, 1996.
[27] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson. M2M: From Mobile to Embedded Internet. IEEE Commun. Mag., 49(4):36–43, Apr. 2011.
[28] S. Chalasani and J. M. Conrad. A Survey of Energy Harvesting Sources for Embedded Systems. In IEEE SoutheastCon, pages 442–447, Apr. 2008.
[29] S. Sudevalayam and P. Kulkarni. Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Commun. Surveys Tuts., 13(3):443–461, Third 2011.
[30] J. Nuffer and T. Bein. Applications of Piezoelectric Materials in Transportation Industry. In Global Symp. Innovative Solutions for the Advancement of the Transp. Ind., volume 4, 2006.
[31] G. Park, T. Rosing, M. D. Todd, C. R. Farrar, and W. Hodgkiss. Energy Harvesting for Structural Health Monitoring Sensor Networks. J. of Infrastructure Syst., 14(1):64–79, 2008.
[32] 3GPP TS 22.368 v11.2.0. Service Requirements for Machine-Type Communications (MTC). Jun. 2011.
[33] 3GPP TR 37.868 v11.0.0. Study on RAN Improvements for Machine-type Communications. Sept. 2011.
[34] S.-Y. Lien, K.-C. Chen, and Y. Lin. Toward Ubiquitous Massive Accesses in 3GPP Machine-to-Machine Communications. IEEE Commun. Mag., 49(4):66–74, Apr. 2011.
[35] W. K. G. Seah, Z. A. Eu, and H.-P. Tan. Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) - Survey and Challenges. In 1st Int. Conf. Wireless Commun., Veh. Technol., Inform. Theory and Aerosp. Electron. Syst. Technol. (Wireless VITAE), pages 1–5, May 2009.
[36] H.-P. Tan, P. W. Q. Lee, W. K. G. Seah, and Z. A. Eu. Impact of Power Control in Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) for Railroad Health Monitoring. In IEEE Int. Conf. Advanced Inform. Netw. and Appl. Workshops (WAINA), pages 804–809, May 2009.
[37] D. Niyato, E. Hossain, M. M. Rashid, and V. K. Bhargava. Wireless Sensor Networks with Energy Harvesting Technologies: A Game-Theoretic Approach to Optimal Energy
Management. IEEE Wireless Commun., 14(4):90–96, Aug. 2007.
[38] H.-H. Lin, H.-Y. Wei, and R. Vannithamby. DeepSleep: IEEE 802.11 Enhancement for Energy-Harvesting Machine-to-Machine Communications. In IEEE GLOBECOM, pages 5231–5236, 2012.
[39] Z. A. Eu, H.-P. Tan, and W. K. G. Seah. Design and Performance Analysis of MAC Schemes for Wireless Sensor Networks Powered by Ambient Energy Harvesting. Ad Hoc Netw., 9(3):300–323, 2011.
[40] M. Tacca, P. Monti, and A. Fumagalli. Cooperative and Reliable ARQ Protocols for Energy Harvesting Wireless Sensor Nodes. IEEE Trans. Wireless Commun., 6(7):2519–2529, 2007.
[41] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A Close Examination of Performance and Power Characteristics of 4G LTE Networks. In Proc. 10th Int. Conf. Mobile Syst., Appl., and Services, pages 225–238. ACM, 2012.
[42] 3GPP TS 36.321 v10.2.0. E-UTRA Medium Access Control (MAC) Protocol Specification. Jun. 2011.
[43] J. Lei, R. Yates, and L. Greenstein. A Generic Model for Optimizing Single-Hop Transmission Policy of Replenishable Sensors. IEEE Trans. Wireless Commun., 8(2):547 –551, Feb. 2009.
[44] N. Michelusi, K. Stamatiou, and M. Zorzi. On Optimal Transmission Policies for Energy Harvesting Devices. In 2012 Inform. Theory and Appl. Workshop (ITA), pages 249–254. IEEE, Feb. 2012.
[45] A. Maafi and A. Adane. Analysis of the Performances of the First-Order Two-State Markov Model Using Solar Radiation Properties. Renewable Energy, 13(2):175–193, 1998.
[46] V. S. Rao, S. N. Akshay Uttama Nambi, R. V. Prasad, and I. Niemegeers. On Systems Generating Context Triggers Through Rnergy Harvesting. IEEE Commun. Mag., 52(6):70–77, Jun. 2014.
[47] A. Decker. Solar Energy Harvesting for Autonomous Field Devices. IET Wireless Sensor Syst., 4(1):1–8, Mar. 2014.
[48] D. Di Zenobio, K. Steenhaut, M. Celidonio, E. Sergio, and Y. Verbelen. A Self-Powered Wireless Sensor for Water/Gas Metering Systems. In IEEE Int. Conf. Commun. (ICC), pages 5772–5776, Jun. 2015.
[49] C. Alippi, R. Camplani, C. Galperti, and M. Roveri. A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors J., 11(1):45–55, Jan. 2011.
[50] M. Grudén, M. Hinnemo, D. Dancila, F. Zherdev, N. Edvinsson, K. Brunberg, L. Andersson, R. Bystrom, and A. Rydberg. Field Operational Testing for Safety Improvement of Freight Trains Using Wireless Monitoring by Sensor Network. IET Wireless Sensor Syst., 4(2):54–60, Jun. 2014.
[51] J. Gong, S. Zhou, Z. Niu, and J. S. Thompson. Energy-Aware Resource Allocation for Energy Harvesting Wireless Communication Systems. In IEEE 77th Veh. Techno. Conf. (VTC Spring), pages 1–5, Jun. 2013.
[52] D. W. K. Ng, E. S. Lo, and R. Schober. Energy-Efficient Resource Allocation in OFDMA Systems with Hybrid Energy Harvesting Base Station. IEEE Trans. Wireless Commun., 12(7):3412–3427, Jul. 2013.
[53] N. Tekbiyik, T. Girici, E. Uysal-Biyikoglu, and K. Leblebicioglu. Proportional Fair Resource Allocation on an Energy Harvesting Downlink. IEEE Trans. Wireless Commun., 12(4):1699–1711, Apr. 2013.
[54] D. Gunduz, K. Stamatiou, N. Michelusi, and M. Zorzi. Designing Intelligent Energy Harvesting Communication Systems. IEEE Commun. Mag., 52(1):210–216, Jan. 2014.
[55] A. Laya, L. Alonso, and J. Alonso-Zarate. Is the Random Access Channel of LTE and LTE-A Suitable for M2M Communications? A Survey of Alternatives. IEEE Commun. Surveys Tuts., 16(1):4–16, First 2014.
[56] C.-C. Kuan, G.-Y. Lin, H.-Y. Wei, and R. Vannithamby. Reliable Multicast and Broadcast Mechanisms for Energy-Harvesting Devices. IEEE Trans. Veh. Technol., 63(4):1813–1826, May 2014.
[57] S. Luo, R. Zhang, and T. J. Lim. Optimal Save-Then-Transmit Protocol for Energy Harvesting Wireless Transmitters. IEEE Trans. Wireless Commun., 12(3):1196–1207, Mar. 2013.
[58] F. Iannello, O. Simeone, and U. Spagnolini. Medium Access Control Protocols for Wireless Sensor Networks with Energy Harvesting. IEEE Trans. Commun., 60(5):1381–1389, May 2012.
[59] O. Briante, A. M. Mandalari, A. Molinaro, G. Ruggeri, J. Alonso-Zarate, and F. Vazquez-Gallego. Duty-Cycle Optimization for Machine-to-Machine Area Networks Based on Frame Slotted-ALOHA with Energy Harvesting Capabilities. In Proc. 20th European Wireless Conf., pages 1–6, May 2014.
[60] M.-J. Shih, Y.-C. Pang, G.-Y. Lin, H.-Y. Wei, and R. Vannithamby. Performance Evaluation for Energy-Harvesting Machine-Type Communication in LTE-A System. In IEEE 79th Veh. Technol. Conf. (VTC Spring), the 2nd Int. Workshop 5G Mobile and Wireless Commun. Syst. for 2020 and Beyond (MWC2020), pages 1–5, May 2014.
[61] 3GPP TR 36.812 v11.0.0. Feasibility Study for Further Advancements for E-UTRA (LTE-Advanced). Sept. 2012.
[62] G.-Y. Lin, S.-R. Chang, and H.-Y. Wei. Estimation and Adaptation for Bursty LTE Random Access. IEEE Trans. Veh. Technol., 65(4):2560–2577, Apr. 2016.
[63] G.-Y. Lin and H.-Y. Wei. Auction-Based Random Access Load Control for Time-Dependent Machine-to-Machine Communications. IEEE Internet of Things J., 3(5):658–672, Oct 2016.
[64] Y.-C. Pang, S.-L. Chao, G.-Y. Lin, and H.-Y. Wei. Network Access for M2M/H2H Hybrid Systems: A Game Theoretic Approach. IEEE Commun. Lett., 18(5):845–848, Jun. 2014.
[65] METIS Official Website. Available: https://www.metis2020.com. Accessed: Jul. 21, 2016.
[66] R. Ratasuk, A. Prasad, Z. Li, A. Ghosh, and M. Uusitalo. Recent Advancements in M2M Communications in 4G Networks and Evolution Towards 5G. In 18th Innovations in Clouds, Internet, and Netw. Conf. (ICIN), pages 52–57, Feb. 2015.
[67] R. Liu, W. Wu, H. Zhu, and D. Yang. M2M-Oriented QoS Categorization in Cellular Network. In 7th WiCOM, pages 1–5, Sept. 2011.
[68] A. Aijaz, M. Tshangini, M.R. Nakhai, X. Chu, and A-H. Aghvami. Energy-Efficient Uplink Resource Allocation in LTE Networks With M2M/H2H Co-Existence Under Statistical QoS Guarantees. IEEE Trans. Commun., 62(7):2353–2365, Jul. 2014.
[69] H. S. Dhillon, H. C. Huang, H. Viswanathan, and R. A. Valenzuela. Power-Efficient System Design for Cellular-Based Machine-to-Machine Communications. IEEE Trans. Wireless Commun., 12(11):5740–5753, Nov. 2013.
[70] A. Rajandekar and B. Sikdar. A Survey of MAC Layer Issues and Protocols for Machine-to-Machine Communications. IEEE Internet of Things J., 2(2):175–186, Apr. 2015.
[71] 3GPP RP-151621. New Work Item: NarrowBand IOT (NB-IOT). Sept. 2015.
[72] X. Cheng, L. Yang, and X. Shen. D2D for Intelligent Transportation Systems: A Feasibility Study. IEEE Trans. Intell. Transp. Syst., 16(4):1784–1793, Aug. 2015.
[73] Z. Wang and V. W. S. Wong. Optimal Access Class Barring for Stationary Machine Type Communication Devices With Timing Advance Information. IEEE Trans. Wireless Commun., 14(10):5374–5387, Oct. 2015.
[74] R.-G. Cheng, J. Chen, D.-W. Chen, and C.-H. Wei. Modeling and Analysis of an Extended Access Barring Algorithm for Machine-Type Communications in LTE-A Networks. IEEE Trans. Wireless Commun., 14(6):2956–2968, Jun. 2015.
[75] C.-Y. Oh, D. Hwang, and T.-J. Lee. Joint Access Control and Resource Allocation for Concurrent and Massive Access of M2M Devices. IEEE Trans. Wireless Commun., 14(8):4182–4192, Aug. 2015.
[76] K.-D. Lee, S. Kim, and B. Yi. Throughput Comparison of Random Access Methods for M2M Service Over LTE Networks. In IEEE GLOBECOM Wkshps, pages 373–377, Dec. 2011.
[77] D. Niyato, P. Wang, and D. I. Kim. Performance Modeling and Analysis of Heterogeneous Machine Type Communications. IEEE Trans. Wireless Commun., 13(5):2836–2849, May 2014.
[78] M.-J. Shih, C.-Y. Yeh, K. D. Huang, and H.-Y. Wei. Energy-Aware Waiting-Line based Resource Allocation in Cellular Network with M2M/H2H Co-existence. In IEEE Int. Conf. Commun. (ICC), pages 2979–2984, Jun. 2015.
[79] Charles A. Holt Jr. and R. Sherman. Waiting-Line Auctions. The Journal of Political Economy, pages 280–294, 1982.
[80] G. Wu, P. Ren, and C. Zhang. A Waiting-Time Auction Based Dynamic Spectrum Allocation Algorithm in Cognitive Radio Networks. In IEEE GLOBECOM, pages 1–5, Dec 2011.
[81] C.-H. Wei, G. Bianchi, and R.-G. Cheng. Modeling and Analysis of Random Access Channels With Bursty Arrivals in OFDMA Wireless Networks. IEEE Trans. Wireless Commun., 14(4):1940–1953, Apr. 2015.
[82] Y. Narahari, D. Garg, R. Narayanam, and H. Prakash. Game Theoretic Problems in Network Economics and Mechanism Design Solutions. Springer-Verlag London, 1999.
[83] C.-H. Yu, K. Doppler, C. B. Ribeiro, and O. Tirkkonen. Resource Sharing Optimization for Device-to-Device Communication Underlaying Cellular Networks. IEEE Trans. Wireless Commun., 10(8):2752–2763, Aug. 2011.
[84] D. Feng, L. Lu, Y.-W. Yi, G. Y. Li, G. Feng, and S. Li. Device-to-Device Communications Underlaying Cellular Networks. IEEE Trans. on Commun., 61(8):3541–3551, Aug. 2013.
[85] S.-L. Chao, H.-Y. Lee, C.-C. Chou, and H.-Y. Wei. Bio-Inspired Proximity Discovery and Synchronization for D2D Communications. IEEE Commun. Lett., 17(12):2300–2303, Dec. 2013.
[86] J. Mo, H.-S. W. So, and J. Walrand. Comparison of Multichannel MAC Protocols. IEEE Trans. Mobile Comput., 7(1):50–65, 2008.
[87] J. Zhang, G. Zhou, C. Huang, S. H. Son, and J. A. Stankovic. TMMAC: An Energy Efficient Multi-Channel MAC Protocol for Ad Hoc Networks. In IEEE Int. Conf. Comm. (ICC), pages 3554–3561, Aug. 2007.
[88] K. Doppler, M. Rinne, C. Wijting, C. B Ribeiro, and K. Hugl. Device-to-Device Communication as an Underlay to LTE-advanced Networks. IEEE Commun. Mag., 47(12):42–49, Dec. 2009.
[89] Next Generation Mobile Networks (NGMN) Alliance. NGMN 5G White Paper. Available: https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf, 2015. Accessed: Jul. 21, 2016.
[90] Z. Zhou, M. Dong, K. Ota, J. Wu, and T. Sato. Energy Efficiency and Spectral Efficiency Tradeoff in Device-to-Device (D2D) Communications. IEEE Wireless Commun. Lett., 3(5):485–488, Oct. 2014.
[91] M. Hasan, E. Hossain, and D. I. Kim. Resource Allocation Under Channel Uncertainties for Relay-Aided Device-to-Device Communication Underlaying LTE-A Cellular Networks. IEEE Trans. Wireless Commun., 13(4):2322–2338, Apr. 2014.
[92] Q. Ye, M. Al-Shalash, C. Caramanis, and J. G. Andrews. Distributed Resource Allocation in Device-to-Device Enhanced Cellular Networks. IEEE Trans. Commun.,
63(2):441–454, Feb. 2015.
[93] C.-W. Yeh, M.-J. Shih, G.-Y. Lin, and H.-Y. Wei. LTE-D Broadcast with Distributed Interference-aware D2D Resource Allocation. In 7th Int. Conf. Ubiquitous and Future Networks (ICUFN), pages 165–170, Jul. 2015.
[94] M.-J. Shih, G.-Y. Lin, and H.-Y. Wei. A Distributed Multi-Channel Feedbackless MAC Protocol for D2D Broadcast Communications. IEEE Wireless Commun. Lett., 4(1):102-105, Feb. 2015.
[95] 3GPP TR 36.211 v13.1.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation. Mar. 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊