跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 20:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張原碩
研究生(外文):Yuan-Shuo Chang
論文名稱:具有有限回程鏈路的兩層式異質性細胞網路與動態分時雙工小細胞網路的干擾抑制
論文名稱(外文):Interference Mitigation for Two-Tier Heterogeneous Cellular Network and Dynamic TDD Small Cell Network via Limited Backhaul Cooperation
指導教授:王奕翔
口試委員:蘇炫榮林士駿
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:110
中文關鍵詞:干擾抑制干擾消除干擾對齊逆雙工動態分時雙工異質性網路有限回程鍊路點陣碼小型基地台
外文關鍵詞:interference mitigationinterference cancellationinterference alignmentreverse duplexdynamic time-division duplexheterogeneous networklimited backhaullattice codesmall cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,主要提出了干擾抑制的方法,而此方法能使兩層式異質性細胞網路與動態分時雙工小細胞網路的整體系統效能能夠有所提升。
在此兩種情境下,細胞間的干擾是影響系統效能的主要因素,也是本論文致力解決的問題。
而考量到用戶裝置的複雜度限制,我們認為處理基地台間的干擾在現實中較為可行。
因此在兩層式異質性細胞網路中,我們使用相反的雙工傳輸來產生基地台間的干擾,也就是說,大型細胞與所有小型細胞使用相反的傳輸模式。
而這便會產生等效的一對多干擾網路與多對一干擾網路。
在一對多干擾網路中,我們主要延伸了 Jovicic 和 Viswanath [1] 的結果並求得近似的通道容量,其中主要的技術是來自 Han 和 Kobayashi [2]。
而在多對一干擾網路中,我們主要延伸了 Bresler 和 Tse [3] 的結果並求得近似的通道容量,並且透過 Erez 和 Zamir [4] 的結果改善了傳輸速率。
除此之外,在上述兩種網路中,我們也得出了在大型基地台與小型基地台間如果存在有限回程鍊路的情況下的近似通道容量。
我們也能將上述的方法應用在動態分時雙工小細胞網路中,因為在此種網路中很自然地會產生基地台間的干擾。
一般來說,這些基地台間的干擾會產生等效的多對多干擾網路,而我們能將其拆解為一對多與多對一干擾網路來處理。
最後我們將上述兩種情境的干擾抑制結果與傳統的傳輸機制做比較。
在干擾或整體系統傳輸能量較強的情況下,我們所提出的干擾緩解方案能有效地提升整體系統效能。
In this thesis, we propose interference mitigation schemes to improve the overall system throughput of two-tier heterogeneous cellular networks (HCN) and dynamic time-division duplex (TDD) small cell networks (SCN).
In the above two scenarios, inter-cell interference is the major barrier against improving system throughput and the problem that we aim to solve.
Considering the complexity of user equipment (UE), it is more feasible in practice to deal with the interference across base stations (BSs).
Therefore, we use reverse duplex transmission to create the BS-BS interferences in two-tier HCN, i.e., macro cell and all of small cell use opposite duplex modes.
Our focus is then on the capacity characterization of the induced equivalent one-to-many interference networks (IN) and many-to-one interference networks.
In one-to-many IN, we mainly extend the results by Jovicic and Viswanath [1] and obtain approximate capacity region.
The main technique is inspired by Han and Kobayashi [2].
In many-to-one IN, we mainly extend the results by Bresler and Tse [3] and obtain the approximate capacity region.
Then, we improve data rates via the results by Erez and Zamir [4].
In addition, if there exists limited backhaul between macro base station (MBS) and small base station (SBS), we also obtain the approximate capacity region of above two INs.
We can also apply the above results in dynamic TDD SCN since the interference across BSs can be generated naturally.
In general, interferences across BSs induce equivalent many-to-many IN which can be decomposed into one-to-many and many-to-one IN.
Finally, we compare our proposed scheme with the conventional scheme.
When interference or overall system transmitting power are stronger, proposed scheme can increase the overall system throughput significantly.
摘要i
Abstract iii
1 Introduction 1
1.1 Relative works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Background 5
2.1 Information Theoretical Results . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Multiple Access Channel . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Broadcast Channel . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Interference Channel . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Deterministic Channel Model . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Point-to-Point Channel . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Multiple Access Channel . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Broadcast Channel . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Interference Channel . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Lattice Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Lattice Code Achieving AWGN Channel Capacity . . . . . . . . 13
2.3.2 Lattice Code in Multiple Access Channel . . . . . . . . . . . . . 15
3 Approximate Capacity Region for One-to-Many Gaussian Interference Network
with Limited Backhaul 17
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Approximate Capacity Region . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Coding and Decoding Strategies . . . . . . . . . . . . . . . . . . 21
3.3.2 Limited Backhaul Cooperation . . . . . . . . . . . . . . . . . . . 23
3.4 Achievable Rate Region for the Sum Rate . . . . . . . . . . . . . . . . . 24
3.4.1 Single Small cell with Multiple Users . . . . . . . . . . . . . . . 25
3.4.2 Multiple Small cells with Single User . . . . . . . . . . . . . . . 29
3.4.3 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Outer Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Approximate Capacity Region for Many-to-One Gaussian Interference Network
with Limited Backhaul 37
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Approximate Capacity Region . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Capacity Region of Deterministic Channel Model . . . . . . . . . . . . . 42
4.3.1 Achievable Strategy . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Outer Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Capacity Region . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Gaussian Channel Strategies . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.1 Coding and Decoding Strategies . . . . . . . . . . . . . . . . . . 48
4.4.2 Limited Backhaul Cooperation . . . . . . . . . . . . . . . . . . . 52
4.5 Achievable Rate Region for Sum Rate . . . . . . . . . . . . . . . . . . . 53
4.6 Gaussian Channel Outer Bounds . . . . . . . . . . . . . . . . . . . . . . 57
5 One-to-Many Interference Network Combine with Many-to-One Interference
Network 61
5.1 Capacity of Deterministic Channel Model . . . . . . . . . . . . . . . . . 62
5.1.1 achievable Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Outer Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6 Numerical Evaluation 69
6.1 Two-tier Heterogeneous Cellular Network . . . . . . . . . . . . . . . . . 69
6.1.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . 69
6.1.2 Comparison with Conventional Scheme . . . . . . . . . . . . . . 70
6.2 Dynamic TDD Small Cell Network . . . . . . . . . . . . . . . . . . . . 74
6.2.1 Algorithm of Selecting Interference Mitigation Scheme . . . . . . 75
6.2.2 Comparison with Conventional scheme . . . . . . . . . . . . . . 77
7 Conclusion 81
8 Discussion: MIMO channel 83
8.1 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A Proof of Proposition 13 89
B Proof of Proposition 15 93
C Proof of Proposition 4.3.2 99
D Proof of Corollary 28 103
Bibliography 107
[1] A. Jovicic, H. Wang, and P. Viswanath, “On network interference management,”
IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 4941–4955, 2010.
[2] H. T. Sun and K. Kobayashi, “A new achievable rate region for the interference channel,” IEEE transactions on information theory, vol. 27, no. 1, pp. 49–60, 1981.
[3] G. Bresler, A. Parekh, and N. David, “The approximate capacity of the many-to-one and one-to-many gaussian interference channels,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4566–4592, 2010.
[4] U. Erez and R. Zamir, “Achieving 1/2 log (1+ snr) on the awgn channel with lattice encoding and decoding,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2293–2314, 2004.
[5] “3GPP,TR 36.872 (VI2.1.0):Small cell enhancements for E-UTRA and E-UTRAN-Physical layer aspects.”
[6] R. H. Etkin, N. David, and H. Wang, “Gaussian interference channel capacity to within one bit,” IEEE Transactions on information theory, vol. 54, no. 12, pp. 5534–5562, 2008.
[7] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom of the-user interference channel,” IEEE Transactions on Information Theory, vol. 54, no. 8, pp. 3425–3441, 2008.
[8] “3GPP, R1-122826:Ericsson, ST-Ericsson,” 2012.
[9] S.-W. Jeon and C. Suh, “Degrees of freedom of uplink-downlink multiantenna cellular networks.” Information Theory (ISIT), 2014 IEEE International Symposium on. IEEE, 2014.
[10] X. H. Chongning Na and H. Jiang, “Interference alignment based dynamic TDD for small cells.” Globecom Workshops (GC Wkshps), 2014. IEEE, 2014.
[11] L. Sanguinetti, A. L. Moustakas, and M. Debbah, “Interference management in 5g reverse tdd hetnets with wireless backhaul: A large system analysis,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 6, pp. 1187–1200, 2015.
[12] A. E. Gamal and Y.-H. Kim, Network information theory. Cambridge university press, 2011.
[13] C. E. Shannon et al., “Two-way communication channels,” in Proc. 4th Berkeley Symp. Math. Stat. Prob, vol. 1. Citeseer, 1961, pp. 611–644.
[14] E. C. V. D. Meulen, “The discrete memoryless channel with two senders and one receiver,” in Proc. IEEE Int. Symp. Information Theory (ISIT), 1971, p. 78.
[15] A. E. Gamal and T. M. Cover, “Multiple user information theory,” Proceedings of the IEEE, vol. 68, no. 12, pp. 1466–1483, 1980.
[16] T. Cover, “Broadcast channels,” IEEE Transactions on Information Theory, vol. 18, no. 1, pp. 2–14, 1972.
[17] P. Bergmans, “Random coding theorem for broadcast channels with degraded components,” IEEE Transactions on Information Theory, vol. 19, no. 2, pp. 197–207, 1973.
[18] R. G. Gallager, “Capacity and coding for degraded broadcast channels,” Problemy Peredachi Informatsii, vol. 10, no. 3, pp. 3–14, 1974.
[19] R. Ahlswede, “The capacity region of a channel with two senders and two receivers,” The Annals of Probability, pp. 805–814, 1974.
[20] H. Sato, “The capacity of the gaussian interference channel under strong interference (corresp.),” IEEE transactions on information theory, vol. 27, no. 6, pp. 786–788, 1981.
[21] V. S. Annapureddy and V. V. Veeravalli, “Gaussian interference networks: Sum capacity in the low interference regime and new outer bounds on the capacity region,” IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3032–3050, 2009.
[22] G. Kramer, “Outer bounds on the capacity of gaussian interference channels,” IEEE transactions on information theory, vol. 50, no. 3, pp. 581–586, 2004.
[23] S. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information flow: a deterministic approach,” arXiv preprint arXiv:0906.5394, 2009.
[24] G. Bresler and D. Tse, “The two-user gaussian interference channel: a deterministic view,” European transactions on telecommunications, vol. 19, no. 4, pp. 333–354, 2008.
[25] R. de Buda, “Some optimal codes have structure,” IEEE Journal on Selected Areas in Communications, vol. 7, no. 6, pp. 893–899, 1989.
[26] H.-A. Loeliger, “Averaging bounds for lattices and linear codes,” IEEE Transactions on Information Theory, vol. 43, no. 6, pp. 1767–1773, 1997.
[27] R. Urbanke and B. Rimoldi, “Lattice codes can achieve capacity on the awgn channel,” IEEE transactions on Information Theory, vol. 44, no. 1, pp. 273–278, 1998.[28] G. Poltyrev, “On coding without restrictions for the awgn channel,” IEEE Transactions on Information Theory, vol. 40, no. 2, pp. 409–417, 1994.
[29] J. Conway and N. Sloane, “Voronoi regions of lattices, second moments of polytopes, and quantization,” IEEE Transactions on Information Theory, vol. 28, no. 2, pp. 211–226, 1982.
[30] G. D. Forney, “Multidimensional constellations. ii. voronoi constellations,” IEEE Journal on Selected Areas in Communications, vol. 7, no. 6, pp. 941–958, 1989.
[31] U. Erez and R. Zamir, “A modulo-lattice transformation for multiple-access channels,” in Electrical and Electronics Engineers in Israel, 2008 IEEE 25th Convention of, 2008.
[32] X. Chu, D. López-Pérez, Y. Yang, and F. Gunnarsson, Heterogeneous Cellular Networks: Theory, Simulation and Deployment. Cambridge University Press, 2013.
[33] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference through structured codes,” IEEE Transactions on Information Theory, vol. 57, no. 10, pp. 6463–6486, 2011.
[34] “3GPP TR 36.828: Evolved Universal Terrestrial Radio Access (E-UTRA); Further enhancements to LTE Time Division Duplex (TDD) for Downlink-Uplink (DL-UL) interference management and traffic adaptation.”
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊