(3.237.97.64) 您好!臺灣時間:2021/03/03 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許耀文
研究生(外文):Yao-Wen Hsu
論文名稱:基於平行板狹縫模型之金屬光柵天線二維分析與設計
論文名稱(外文):Analysis and Design of Metal-Strip Grating Antennas Based on 2-D Slitted Parallel Plate Waveguide Model
指導教授:林怡成
口試委員:陳俊雄吳瑞北張宏鈞張道治黃瑞彬鄭瑞清
口試日期:2017-01-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:182
中文關鍵詞:漏波天線金屬光柵平行板波導狹縫分析
外文關鍵詞:leaky waveMetal-strip-gratingParallel plate weveguideslit analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一新方法,用來最佳化一薄型金屬光柵天線之效能並分析其工作原理。基於單條細狹縫之分析,本文先將金屬光柵問題分解成一基礎問題:平面波以任意角度入射至平行板波導中無窮長之單一狹縫。藉由計算所需之二維格林函數,我們得到平面波以任角度入射狹縫之反射及穿透係數,並由全波模擬得到良好的驗證。此方法得到之結果可廣泛應用於平面微波電路架構,導波與漏波結構皆適用。本文並演示其中數種,包含平行及垂直傳播方向之介質構裝波導,接地面之共平面波導,含接地面之共平面帶線。本研究發現許多有趣且獨特現象:例如垂直傳播方之狹縫對介質構裝波導造地的全反射及輻射截止頻率,以及無平板模態損耗之接地面共平面波導。

依據次此隙縫分析,我們可將此光柵天線簡化成一串接電路。天線分析被分為兩切面獨立討論,分別以均勻性及週期性漏波模型計算場型,並進一步得到天線指向性做參數分析。最佳化後的光柵而後加上實際的饋入結構,本文演示槽孔及電感饋入兩種。槽孔饋入天線操作於5GHz,單一元件可有11dBi以上增益,四元件及八元件陣列則分別有16dBi及19dBi增益,但阻抗頻寬僅1%,故本論文提出另一電感饋入天線於2.35GHz,單一元件同樣11dB以上增益,四元件陣列則亦有16dBi,頻寬則增加至3%。

本文提供一完整且一致性的方法,有系統且快速有效率的分析並最佳化一金屬光柵天線。除天線以外,本方法可適於導波結構,來解決由平面及狹縫構成的問題,特別在細狹縫,全波模擬較難處理的問題中,有良好的效果。
We developed a novel approach to analyze and design a thin metal-strip grating (MSG) antenna. Starting from the basic element, we decomposed and transformed the MSG antenna problem into a fundamental topic - the scattering of a single slit on a parallel plate waveguide (PPW) with an oblique incident TEM wave. By deriving the 2-D Green''s functions of the problem, the reflection and transmission properties of the slit were successfully calculated and validated by full-wave simulations. The proposed 2-D slitted PPW model was then applied to several planar guided-wave structures, such as the substrate integrated wavequide (SIW) with transverse or longitudinal slits, the grounded co-planar waveguides (CPW), and the grounded co-planar striplines. We found and discussed some interesting and unique phenomena in these structures, such as the ``transmission-zero frequency" and the ``radiation-cut-off frequency" in transversely slitted SIW and the "leakage-free structure" in a grounded coplanar waveguide (GCPW).

With the developed 2-D slitted PPW model, a MSG antenna was analyzed using cascaded equivalent circuits for the periodic slits. We divided the antenna problem into H-plane and E-plane cases and evaluate far-field patterns with the uniform and the periodic leaky wave models, respectively. We successfully predicted the antenna directivity and then used the validated model to optimize a finite-size thin MSG antenna. Additionally, we demonstrated the realistic design, implementation, and measurement of printed MSG antennas in terms of two feeding structures. The slot-fed design at 5GHz provided the antenna gain about 11dBi for the element, and 16dBi and 19dBi for 2x2 and 4x2 arrays, respectively. The inductor-fed design at 2.35GHz provided the antenna gain about 11dBi for the element, and 16dBi for 2x2 arrays with an enhanced impedance bandwidth of 3% .

This comprehensive study covers the antenna theory, design, and experimental test. The work provides a self-consistent approach to analyze and design a thin MSG antenna. In addition to the antenna problem, the developed 2-D slitted PPW model may also efficiently solve the guided-wave problems with slit-based planar structures, especially with narrow slits where the meshing-based full-wave simulator is inept.
口試委員會審定書iii
誌謝v
摘要vii
Abstract
Table of Abbreviation xxvii
1 Introduction 1
1.1 Background and motivations . . . . . . . . . . . . . . 1
1.2 Ray-tracing optical concept . . . . . . . . . . . . . . . 2
1.3 Leaky wave analysis based on TEN model . . . . . . . 3
1.4 Spectral domain analysis . . . . . . . . . . . . . . . . . 5
1.5 Slitted PPW analysis . . . . . . . . . . . . . . . . . . . 6
1.6 Proposed Method . . . . . . . . . . . . . . . . . . . . . 7
1.7 Organization . . . . . . . . . . . . . . . . . . . . . . . 9
2 General Formulation of a Slitted Parallel Plate Waveguide 11
2.1 General Formulation of Green’s Functions . . . . . . . 12
2.1.1 Green’s Function in the Air Region (Region 1) 15
2.1.2 Green’s Function in Parallel Plate Waveguide
Region (Region 2) . . . . . . . . . . . . . . . . 17
2.2 Fast Calculation with PMC and PEC Symmetries . . . 19
2.2.1 PMC Symmetry . . . . . . . . . . . . . . . . . 21
2.2.2 PEC Symmetry . . . . . . . . . . . . . . . . . 25
2.3 Results of Normal Incidence . . . . . . . . . . . . . . . 27
2.4 Results of Oblique Incidence . . . . . . . . . . . . . . 31
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Applications for Slit-Based Planar Structures 37
3.1 Transverse Slit on a Substrate Integrated Waveguide . . 37
3.2 Grounded Co-planar Waveguide . . . . . . . . . . . . . 46
3.3 Grounded Co-planar Stripline . . . . . . . . . . . . . . 50
3.4 Equivalent Circuit Model of A Longitudinal Slit in SIW 53
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 59
4 Analysis of Metal-Strip Grating Antenna Based on Slitted
Parallel Plate Waveguide Model 61
4.1 Modeling for H-plane Patterns . . . . . . . . . . . . . . 63
4.2 Modeling for E-plane Patterns . . . . . . . . . . . . . . 71
4.3 Broadside Directivity Evaluation and Parametric Study 73
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 84
5 Antenna Design Based on the Optimization 87
5.1 A slot-fed MSG Antenna at 5GHz . . . . . . . . . . . . 87
5.2 A slot-fed MSG Array at 5GHz . . . . . . . . . . . . . 97
5.3 An inductor-fed MSG Antenna at 2.35GHz . . . . . . . 118
5.4 An inductor-fed MSG Array at 2.35GHz . . . . . . . . 130
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 140
6 Conclusion 143
A Convergence Test of SPPW Model 147
B Computing Time and Memory Consumption 151
C Transmission and Reflection Measurement of Slitted SIW 153
D MSG Antenna with Different Slit Width 157
References 173
[1]R. Honey, “A flush-mounted leaky-wave antenna with predictable patterns,” IRE Trans. Antennas Propag., vol. 7, no. 4, pp. 320–329, 1959.
[2]G. Trentini, “Partially reflecting sheet arrays,” IRE Trans. Antennas Propag., vol. 4, no. 4, pp. 666–671, 1956.
[3]N. Marcuvitz, Waveguide Handbook. New York: kIcGraw-Hill Book Co., Inc., 1951.
[4]R. C. M. Li and A. A. Oliner, “Scattering Resonances on a FastWave Structure,” IEEE Trans. Antennas Propag., vol. 13, no. 6, pp. 948–959, 1965.
[5]T. Z. T. Zhao, D. Jackson, J. Williams, H.-Y. Yang, and A. Oliner, “2-D periodic leaky-wave antennas-part I: metal patch design,” IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3505–3514, 2005.
[6]R. F. Harrington, “Propagation along a slotted cylinder,” J. Appl. Phys., vol. 24, no. 11, pp. 1366–1371, 1953.
[7]L. Goldstone and A. Oliner, “Leaky-wave antennas I: Rectangular waveguides,” IRE Trans. Antennas Propag., vol. 7, no. 4, pp. 307– 319, 1959.
[8]A. A. Oliner and K. Lee, “The nature of the leakage from higher modes on microstrip line,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 57–60, 1986.
[9]A. Oliner and K. Lee, “Microstrip leaky wave strip antennas,” in Antennas Propag. Soc. Int. Symp., vol. 24, 1986, pp. 443–446.
[10]A. A. Oliner and D. Jackson, “Leaky-wave antennas,” in Antenna Eng. Handb., J. L. Volakis, Ed. New York: Mc-Graw-Hill, 2007, ch. 11.
[11]D. Jackson and A. A. Oliner, “Leaky-wave antennas,” in Mod. Antenna Handb., C. A. Balanis, Ed. New York: Wiley, 2008, ch. 7.
[12]R. S. Elliott, Antenna Theory and Design, revised ed. Wiley-IEEE Press, 2003.
[13]G. Lovat, P. Burghignoli, and D. R. Jackson, “Fundamental Properties and Optimization of Broadside Radiation From Uniform Leaky-Wave Antennas,” IEEE Trans. Antennas Propag., vol. 54, no. 5, pp. 1442–1452, 2006.
[14]P. Burghignoli, G. Lovat, and D. R. Jackson, “Analysis and optimization of leaky-wave radiation at broadside from a class of 1-D periodic structures,” IEEE Trans. Antennas Propag., vol. 54, no. 9, pp. 2593–2604, 2006.
[15]A. Sutinjo, M. Okoniewski, and R. H. Johnston, “Beam-splitting condition in a broadside symmetric leaky-wave antenna of finite length,” IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 609–612, 2008.
[16]Y. F. Lu and Y. C. Lin, “A Hybrid Approach for Finite-Size FabryPe´rotAntennaDesignWithFastandAccurateEstimationonDirectivity and Aperture Effi ciency,” IEEE Trans. Antennas Propag., vol. 61, no. 11, pp. 5395–5401, 2013.
[17]Y. W. Hsu, H. C. Lin, and Y. C. Lin, “Modeling and PCB Implementation of Standing Leaky-Wave Antennas Incorporating Edge Reflection for Broadside Radiation Enhancement,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 461–468, 2016.
[18]R. Collin, “Analytical solution for a leaky-wave antenna,” IRE Trans. Antennas Propag., vol. 10, no. 5, pp. 561–565, 1962.
[19]P. Burghignoli, P. Baccarelli, F. Frezza, A. Galli, P. Lampariello, and A. A. Oliner, “Low-frequency dispersion features of a new complex mode for a periodic strip grating on a grounded dielectric slab,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2197–2205, 2001.
[20]M. Guglielmi and H. Hochstadt, “Multimode Network Description of a Planar Periodic Metal-Strip Grating at a Dielectric InterfacePart I: Rigorous Network Formulations,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 5, pp. 902–909, 1989.
[21]M. Guglielmi and A. A. Oliner, “Multimode network description of a planar periodic metal-strip grating at a dielectric interface-Part II: Small-Aperture and Small-Obstacle Solutions,” Microw.Theory Tech. IEEE Trans., vol. 37, no. 3, pp. 534–541, 1989.
[22]M. Guglielmi and H. Hochstadt, “Multimode Network Description of a Planar Periodic Metal-Strip Grating at a Dielectric InterfacePart III: Rigorous Solution,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 5, pp. 902–909, 1989.
[23]R. H. Jansen, “The Spectral-Domain Approach for Microwave Integrated Circuits,” IEEE Trans. Microw. Theory Tech., vol. MTT33, no. 10, pp. 1043–1056, 1985.
[24]K. A. Michalski and J. R. Mosig, “Multilayered media green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag., vol. 45, no. 3, pp. 508–519, 1997.
[25]T. Itoh, Numerical techniques for microwave and millimeter- wave passive structures. New York: Wiley-Interscience, 1989.
[26]P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Modal properties of surface and leaky waves propagating at arbitrary angles along a metal strip grating on a grounded slab,” IEEE Trans. Antennas Propag., vol. 53, no. 1 I, pp. 36–46, 2005.
[27]Y. Kaganovsky and R. Shavit, “Analysis of radiation from a line source in a grounded dielectric slab covered by a metal strip grating,” IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 135–143, 2009.
[28]F. H. Bellamine and E. F. Kuester, “Guided Waves Along a Metal Grating on the Surface of a Grounded Dielectric Slab,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 7, pp. 1190–1197, 1994.
[29]R. F. Harrington, Time-Harmonic Electromagnetic Fields. WileyIEEE Press, 2001.
[30]D. M. Pozar, Microwave Engineering, 3rd ed.Wiley, 2004.
[31]B. Tomasic and A. Hessel, “Electric and magnetic current sources in the parallel plate waveguide,” IEEE Trans. Antennas Propag., vol. 68, no. 1, pp. 1307–1310, 1987.
[32]G. Kwan and N. Das, “Excitation of a parallel-plate dielectric waveguide using a coaxial probe-basic characteristics and experiments,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 6, pp. 1609–1620, 2002.
[33]R. Safavi-Naini and R. H. Macphie, “On Solving Waveguide Junction Scattering Problems by the Conservation of Complex Power Technique,” IEEE Trans. Microw. Theory Tech., vol. 29, no. 4, pp. 337–343, 1981.
[34]C. Angulo and W. Chang, “The launching of surface waves by a parallel plate waveguide,” IRE Trans. Antennas Propag., vol. 7, no. 4, pp. 359–368, 1959.
[35]P. Mannikko, C. Courtney, and C. M. Butler, “Slotted parallel-plate waveguide coupled to a conducting cylinder,” in IEE Proc. H Microwaves, Antennas Propag., 1992, pp. 193–201.
[36]J. I. Lee, C. H. Lee, and Y. K. Cho, “Electromagnetic coupling mechanism to a conducting strip through a narrow slit in a parallelplate waveguide,” IEEE Trans. Antennas Propag., vol. 49, no. 4, pp. 592–596, 2001.
[37]J. I. Lee and Y. K. Cho, “Maximum Electromagnetic Coupling to a Nearby Conducting Strip Through Narrow and Wide Slits in a Parallel-Plate Waveguide,” Electronics, vol. 51, no. 4, pp. 693– 699, 2003.
[38]E. Arnieri and G. Amendola, “Analysis of Substrate Integrated Waveguide Structures Based on the Parallel-Plate Waveguide Green’s Function,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 7, pp. 1615–1623, 2008.
[39]Y. Zhang, J. Fan, G. Selli, M. Cocchini, and F. D. Paulis, “Analytical Evaluation of Via-Plate Capacitance for Multilayer Printed Circuit Boards and Packages,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 9, pp. 2118–2128, 2008.
[40]E. X. Liu, E. P. Li, Z. Z. Oo, and X. Wei, “Novel Methods for Modeling of Multiple Vias in Multilayered Parallel-Plate Structures,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1724–1733, 2009.
[41]C. Butler and E. Yung, “Properties of a slotted parallel-plate waveguide excited by an incident TEM wave,” in Antennas Propag. Soc. Int. Symp., 1976, pp. 404–407.
[42]T. L. Keshavamurthy and C. M. Butler, “Characteristics of a slotted parallel-plate waveguide filled with a truncated dielectric,” IEEE Trans. Antennas Propag., no. 1, 1981.
[43]C. W. Chuang, “Generalized admittance matrix for a slotted parallel-plate waveguide,” IEEE Trans. Antennas Propag., vol. 36, no. 9, pp. 1227–1230, 1988.
[44]Y. K. Cho and H. Son, “Characteristics of a parallel-plate waveguide with a narrow slit in its upper plate,” Electron. Lett., vol. 22, no. 22, pp. 1166–1167, 1986.
[45]Y. K. Cho, “On the equivalent circuit representation of the slitted parallel-plate waveguide filled with a dielectric,” IEEE Trans. Antennas Propag., vol. 31, no. 9, 1989.
[46]J. I. Lee, U. H. Cho, and Y. K. Cho, “Analysis for a dielectrically filled parallel-plate waveguide with finite number of periodic slots in its upper wall as a leaky-wave antenna,” IEEE Trans. Antennas Propag., vol. 47, no. 4, pp. 701–706, 1999.
[47]C. W. Lee and H. Son, “Periodically Slotted Dielectrically Filled Parallel-Plate Waveguide as a Leaky-Wave Antenna: EPolarization Case,” IEEE Trans. Antennas Propag., vol. 47, no. 1, pp. 171–178, 1999.
[48]R. E. Collin, “Green’s Functions,” in Field Theory of Guided Waves. Wiley-IEEE Press, 1991, ch. 2.
[49]D. C. Chang and E. F. Kuester, “Total and partial reflection from the end of a parallel-plate waveguide with an extended dielectric slab,” Radio Sci., vol. 16, pp. 1–13, 1981.
[50]E. Kuester, R. Johnk, and D. Chang, “The thin-substrate approximation for reflection from the end of a slab-loaded parallel-plate waveguide with application to microstrip patch antennas,” IEEE Trans. Antennas Propag., vol. 30, no. 5, pp. 910–917, 1982.
[51]M. Bozzi, A. Georgiadis, and K. Wu, “Review of substrateintegrated waveguide circuits and antennas,” IET Microwaves, Antennas Propag., vol. 5, no. 8, p. 909, 2011.
[52]H. Shigesawa, M. Tsuji, and A. A. Oliner, “Dominant mode power leakage from printed-circuit waveguides,” Radio Sci., vol. 26, no. 2, pp. 559–564, 1991.
[53]N. K. Das, “Methods of suppression or avoidance of parallel-plate power leakage from conductor-backed transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 2, pp. 169–181, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔