跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳凱斌
研究生(外文):Kai-Bin Wu
論文名稱:三維記憶體封裝模型化與信號及電源完整性設計
論文名稱(外文):Electrical Modeling and Signal/Power Integrity Design in Three-Dimensional Memory Packaging
指導教授:吳瑞北
口試日期:2017-07-27
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:127
中文關鍵詞:行動記憶體三維整合穿矽連通柱陣列基板雜訊晶圓級構裝眼圖信號/電源完整度重新分配層板邊輻射短路連通柱
外文關鍵詞:Mobile memorythree-dimensional integrationthrough-silicon-viasubstrate noisewafer-level packagingeye-diagramsignal/power integrityre-distribution layeredge radiationshorting via
相關次數:
  • 被引用被引用:0
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
行動通訊裝置近幾年來進步迅速,且朝向輕薄省電且高頻寬的趨勢發展。為了達成此目的,透過三維整合的寬頻輸出入架構與第四代雙倍資料率同步隨機存取記憶體成為最熱門的技術。本論文著重於兩大行動記憶體的三維整合連結—穿矽連通柱與晶圓級構裝。首先,為了分析穿矽連通柱與矽基板間的基板雜訊耦合,建立了由電阻與電容組成的等效電路,模型中的電阻與電容皆滿足相同的拉普拉斯方程式但具有不同的邊界條件,透過計算不同介質的電容結構可以得到模型中的元件值,並藉由設計接地防護圈結構來驗證其對基板雜訊耦合的抑制效果。
接著,為了處理寬頻輸出入架構晶片間大量穿矽連通柱的問題,本論文基於二維傅立葉轉換提出一種簡化且有效率的週期性穿矽連通柱陣列模型。透過此簡化模型更可以進一步計算寬頻輸出入架構中,降低信號串音的接地穿矽連通柱的位置與數量。
對於另一種三維整合構裝技術,晶圓級構裝,本論文提出一種應用於第四代雙倍資料率同步隨機存取記憶體的新式雙層重新分配層設計,這種新穎的電源接地網格式佈局可以有效提升電源完整度。此外,為了處理製程微縮產生的效應,本文提出二階串聯RLC等效電路與規一化阻抗,並利用適當設計重新分配層的尺寸優化眼圖,使第四代雙倍資料率同步隨機存取記憶體於2微米的晶圓級構裝製程中,可正常運作於4266 Mbps的速度。
最後,除了訊號及電源完整度外,本論文也探討電磁干擾的問題。對於構裝基板中電源接地層的板邊輻射現象,本論文透過模態分析分離不同模態的輻射機制。並設計不同尺寸的接地連通柱以實現不同程度的板邊輻射抑制。
Mobile devices develop rapidly in recent few years, with the trends of the slim, low-power, and high bandwidth features. The three-dimensional integration such as Wide-I/O and LPDDR4 DRAM become the most popular technologies. This dissertation focuses on the interconnects of two popular mobile memories, through-silicon-via (TSV) and wafer-level packaging (WLP). To begin with, the equivalent model consisting of resistors and capacitors is established in order to analyze the substrate noise coupling between TSVs and silicon substrate. It deserves notice that the resistors and capacitors in the equivalent model satisfy the same Laplace equation but with different boundary conditions, and thus the resistance model can be judiciously solved from the capacitance computations which are readily available from commercial software. Based on that, the guard ring design is also employed to validate the accuracy of the present model and its suppressing effect on the substrate noise.
Next, for dealing with large numbers of TSVs between Wide-I/O chips, this dissertation proposed a method of creating a simplified and efficient equivalent model for periodic TSV array based on the two-dimensional Fourier transform. The simplified model is also used to effectively access the position and number of dummy ground TSV to reduce the crosstalk between signals in Wide-I/O architecture.
As for the WLP, this dissertation proposed a novel two-layer re-distributed layer (RDL) design in LPDDR4 applications by utilizing a novel power/ground meshed layout for superior power integrity performance. Besides, in order to handle the effect of process shrinkage, the 2nd order series RLC circuit and normalized resistance is proposed. By adjusting the cross-sectional structure of RDL properly, the eye-diagram can be optimized and LPDDR4 memory can work well at 4266 Mbps on 2 μm WLP.
The last, in addition to signal and power integrity, the dissertation also addressed the electromagnetic interference issues. It employs the mode analysis to separate the radiation mechanisms of different modes for edge radiation of power/ground plane in multi-layer package. The size of shorting via is also designed to implement the different level suppression of edge radiation.
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Literature Survey 5
1.3 Contributions 12
1.4 Organization of the Dissertation 13
Chapter 2 High-Speed DRAM Systems 17
2.1 Double Data Rate DRAM 18
2.2 Development of Mobile DRAM 20
2.2.1 LPDDR4 Memory Technology 20
2.2.2 Wide-I/O Memory Technology 24
2.2.3 Features of Mobile Memory Technologies 29
2.3 Other High-Speed DRAM Technologies 30
Chapter 3 Modeling and Suppression of Substrate Noise in TSV-Based 3-D IC 33
3.1 TSV Technique and Electrical Characteristic 33
3.2 Modeling of Substrate Noise 39
3.3 Parameter Extraction of Substrate Noise Model 44
3.4 Analysis Results and Comparison 46
3.5 Verification and Measurement Results 49
3.6 Summary 54
Chapter 4 Modeling of Through-Silicon-Via Array 55
4.1 Multi-TSV in Wide-I/O Application 56
4.2 Simplified Multi-TSV Model 57
4.3 Extra Ground TSV for Crosstalk Reduction 62
4.4 Summary 66
Chapter 5 Analysis and Design of Signal/Power Integrity for Wafer-Level Packaging 67
5.1 Wafer Level Packaging Technology 67
5.2 Modeling and Analysis of WLP in LPDDR4 70
5.2.1 Modeling for Signal/Power Integrity 72
5.2.2 Equivalent Model for RDL Transmission Line 74
5.2.3 Novel PDN Design of Two-Layer RDL 77
5.3 Design Examples and Simulation Results 81
5.3.1 SI/PI Co-simulation for Two-Layer RDL 81
5.3.2 Effect of Process Scaling on Eye Diagram 83
5.3.3 Optimized Two-Layer RDL of SI/PI Design 84
5.4 Design Procedure for Two-Layer RDL in WLP 85
5.5 Summary 86
Chapter 6 Suppression of Edge Radiation of Multi-Layer Packaging 87
6.1 Edge Radiation and Design of Shorting Vias 88
6.1.1 Edge Radiation of Parallel Power/Ground Planes 89
6.1.2 Mode Mechanism in EMI Suppression 91
6.1.3 Canonical Problem and Closed-form Solution 94
6.1.4 Shorting Vias Design Procedure 99
6.2 Design Examples and Numerical Results 99
6.2.1 Computations of Total Radiated Power 99
6.2.2 Optimal Design for Shorting Vias 102
6.3 Experimental Validation 104
6.4 Summary 106
Chapter 7 Conclusions and Future Works 109
7.1 Conclusions of the Dissertation 109
REFERENCE 111
PUBLICATION LIST 125
ACKNOWLEDGEMENT 127
[1]G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, pp. 114–117, Apr. 1965.
[2]ITRS Overview, ITRS, July 11–12, 2015. (http://www.itrs2.net/itrs-reports.html)
[3]J. Kedzierski, E. Nowak, T. Kanarsky, Y. Zhang, D. Boyd, R. Carmthers, C. Cabral, R. Amos, C. Lavoie, R. Roy, J. Nybury, E. Sullivan, J. Benedict, P. Saunders, K. Wong, D. Canaperi, M. Krishnan, K.-L. Lee, B. A. Rainey, D. Fried, P. Cottrell, H.-S. P. Wong, M. Ieong, and W. Haensch, “Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation,” in IEDM Tech. Dig., Dec. 2002, pp. 247–250.
[4]W. Yang and J. G. Fossum, “On the feasibility of nanoscale triple gate CMOS transistors,” IEEE Trans. Electron. Devices, vol. 52, no. 6, pp. 1159–1164, June 2005.
[5]T. G. Lenihan and E. J. Vardaman, “Worldwide perspectives on SiP markets: Technology trends and challenges,” in Proc. 7th Int. Conf. Electron. Packag. Technol., Shanghai, China, Aug. 26–29, 2006, pp. 1–3.
[6]A. Yoshida and J. Taniguchi, "A study on package stacking process for package-on- package (PoP)," in Proc. 56th Electron. Compon. Technol. Conf., San Diego, CA, May 30–June 2, 2006, pp. 825–830.
[7]J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright, and J. M. Cotte, “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1718–1724, Aug. 2008.
[8]Y. Jin, X. Baraton, S. W. Yoon, Y. Lin, P. C. Marimuthu, V. P. Ganesh, T. Meyer, and A. Bahr, “Next generation eWLB (embedded wafer level BGA) packaging,” in Proc. Electron. Packag. Technol. Conf., Singapore, Dec. 8–10, 2010, pp. 520–526.
[9]Mobile Memory Technology Roadmap, JEDEC, 2013. (https://www.jedec.org/sites/default/files/files/H_Vuong_Mobile_Forum_May_2013.pdf)
[10]LPDDR3 specification, JEDEC Standard (2015, Aug.). [Online], Available: http://www.jedec.org.
[11]LPDDR4 specification, JEDEC Standard (2017, Mar.). [Online], Available: http://www.jedec.org.
[12]Wide I/O 2 specification, JEDEC Standard (2014, Aug.). [Online], Available: http://www.jedec.org.
[13]Wide I/O Single Data Rate (Wide I/O SDR), JEDEC Standard (Dec. 2011) JESD229. [Online], Available: http://www.jedec.org.
[14]U. Kang, H.-J. Chung, S. Heo, D.-H. Park, H. Lee, J. H. Kim, S.-H. Ahn, S.-H. Cha, J. Ahn, D. Kwon, J.-W. Lee, H.-S. Joo, W.-S. Kim, D. H. Jang, N. S. Kim, J.-H. Choi, T.-G. Chung, J.-H. Yoo, J. S. Choi, C. Kim, and Y.-H. Jun, “8 Gb 3-D DDR3 DRAM using through-silicon-via technology,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 111–119, Jan. 2010.
[15]J.-S. Kim, C. S. Oh, H. Lee, D. Lee, H. R. Hwang, S. Hwang, B. Na, J. Moon, J.-G. Kim, H. Park, J.-W. Ryu, K. Park, S. Y. Kang, S.-Y. Kim, H. Kim, J.-M. Bang, H. Cho, M. Jang, C. Han, J.-B. Lee, J. S. Choi, and Y.-H. Jun, “A 1.2 V 12.8 GB/s 2 Gb mobile Wide-I/O DRAM with 4×128 I/Os using TSV based stacking,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 107–116, Jan. 2012.
[16]C. Ryu, J. Lee, H. Lee, K. Lee, T. Oh, and J. Kim, “High frequency electrical model of through wafer via for 3-D stacked chip packaging,” in Proc. IEEE Electro. Systemintegr. Technol. Conf., Dresden, Germany, Sept. 5–7, 2006, pp. 215–220.
[17]J. Pak, J. Cho, J. Kim, J. Lee, H. Lee, K. Park, and J. Kim, “Slow wave and dielectric quasi-TEM modes of metal-insulator-semiconductor (MIS) structure through silicon via (TSV) in signal propagation and power delivery in 3-D chip package,” in Proc. 60th IEEE Electron. Comp. Technol. Conf., Las Vegas, NV, June 1–4, 2010, pp. 667–672.
[18]K. J. Han, M. Swaminathan, and T. Bandyopadhyay, “Electromagnetic modeling of through-silicon via (TSV) interconnections using cylindrical modal basis functions,” IEEE Trans. Adv. Packag., vol. 33, no. 4, pp. 804–817, Nov. 2010.
[19]S. W. Ho, S. W. Yoon, Q. Zhou, K. Pasad, V. Kripesh, and J. H. Lau, “High RF performance TSV silicon carrier for high frequency application,” in Proc. IEEE 58th Electron. Comp. Technol. Conf., Lake Buena Vista, FL, May 27–30, 2008, pp. 1946–1952.
[20]J. Liu and X. Lin, “Equalization in high-speed communication systems,” IEEE Circuits Syst. Mag., vol. 4, no. 2, pp. 4–17, Sept. 2004.
[21]Y.-S. Cheng and R.-B. Wu, “Direct eye diagram optimization for arbitrary transmission lines using FIR filter” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 1, no. 8, pp. 1250–1258, Aug. 2011.
[22]S. Kasturia and J. H. Winters, “Techniques for high-speed implementation of nonlinear cancellation,” IEEE J. Sel. Areas Commun., vol. 9, no. 5, pp. 711–717, June 1991.
[23]W. Humann, “Compensation of transmission line loss for Gbit/s test on ATEs,” in Proc. IEEE Int. Test Conf., Baltimore, MD, Oct. 2002, pp. 430–437.
[24]J. Kim, E. Song, J. Cho, J. Pak, J. Lee, H. Lee, K. Park, and J. Kim, “Through silicon via (TSV) equalizer,” in Proc. IEEE 18th Electr. Perform. Electron. Packag. Syst. Conf., Portland, OR, Oct. 19–21, 2009, pp. 13–16.
[25]R.-B. Sun, C.-Y. Wen, and R.-B. Wu, “Passive equalizer design for through silicon vias with perfect compensation” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 1, no. 11, pp. 1815–1822, Nov. 2011.
[26]H. Kim, J. Cho, J. Kim, S. Choi, K. Kim, J. Lee, K. Park, J. S. Pak, , and J. Kim, “A wideband on-interposer passive equalizer design for chip-to-chip 30-Gb/s serial data transmission” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 5, no. 1, pp. 28–39, Jan. 2015.
[27]A. Afzali-Kusha, M. Nagata, N. K. Verghese, and D. J. Allstot, “Substrate noise coupling in SoC design: modeling, avoidance, and validation,” Proc. IEEE, vol. 94, no. 12, pp. 2108–2138, Dec. 2006.
[28]A. Helmy and M. Ismail, The chip – A design guide for reducing substrate noise coupling in RF applications,” IEEE Circuits and Devices Mag., vol. 22, no. 5, pp. 7–21, Sept./Oct. 2006.
[29]J. Cho, J. Shim, E. Song, J. Pak, J. Lee, H. Lee, K. Pak, and J. Kim, “Active circuit to through silicon via noise coupling,” in Proc. IEEE 18th Elect. Perform. Electro. Packag. Syst. Conf., Tigard, OR, Oct. 19–21, 2009, pp. 97–100.
[30]R. Gharpurey and R. G. Meyer, “Modeling and analysis of substrate coupling in integrated circuits,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 344–353, Mar. 1996.
[31]J. Cho, E. Song, K. Yoon, J. S. Pak, J. Kim, W. Lee, T. Song, K. Kim, J. Lee, H. Lee, K. Park, S. Yang, M. Suh, K. Byun, and J. Kim, “Modeling and analysis of through-silicon via (TSV) noise coupling and suppression using a guard ring,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 1, no. 2, pp. 220–233, Feb. 2011.
[32]M. Nagata., J. Nagai, K. Hijikata, T. Morie, and A. Iwata, “Physical design guides for substrate noise reduction in CMOS digital circuits,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 539–549, Mar. 2001.
[33]X. Aragonès and A. Rubio, “Experimental comparison of substrate noise coupling using different wafer types,” IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1405-1409, Oct. 1999.
[34]Y. Hiraoka, I. Imanishi, M. Maeda, Y. Murasaka, and A. Iwata, “Isolation strategy against substrate coupling in CMOS mixed- signal/RF circuits,” in Symp. VLSI Circuits Dig., Kyoto, Japan, June 16–18, 2005, pp.276–279.
[35]K.-D. Kim, M.-K. Jeong, S.-M. Cho, H.-J. Kang, B.-J. Jun, J.-B. Kim, K.-S. Choi, S.-Y. Cha, J.-H. Lee, J.-G. Jeong, S.-J. Hong, and J.-H. Lee, “A new guard-ring technique to reduce coupling noise from through silicon via (TSV) utilizing inversion charge induced by interface charge,” in Symp. VLSI Technol., Kyoto, Japan, June 11–14, 2013, T44–T45.
[36]S. Uemura, Y. Hiraoka, T. Kai, and S. Dosho, “Isolation techniques against substrate noise coupling utilizing through silicon via (TSV) process for RF/mixed-signal SoCs,” IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 810–816, Apr. 2012.
[37]M. Lee, J. Cho, and J. Kim, “Noise coupling analysis between TSV and active circuit,” in Proc. Elec. Design Adv. Packag. Syst., Taipei, Taiwan, Dec. 9-12, 2012, pp. 46-49.
[38]S. Bronckers, G. Van der Plas, G. Vandersteen, and Y. Rolain, “Substrate noise coupling mechanisms in lightly doped CMOS transistors,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1727-1733, June 2010.
[39]HFSS (High Frequency Structure Simulator), Ver. 12.0, ANSYS, Inc. [Online]. Available: http://www.ansys.com
[40]A. E. Engin and S. R. Narasimhan, “Modeling of crosstalk in through silicon vias” IEEE Trans. Electromagn. Compat., vol. 55, no. 1, pp. 149-158, Feb. 2013.
[41]C.-D. Wang, Y.-J. Chang, Y.-C. Lu, P.-S. Chen, W.-C. Lo, Y.-P. Chiou, and T.-L. Wu, “ABF-based TSV arrays with improved signal integrity on 3-D IC/interposers: equivalent models and experiments” IEEE Trans. Compon., Packag. Manuf. Technol., vol. 3, no. 10, pp. 1744–1753, Oct. 2013.
[42]C.-K. Shen, Y.-C. Lu, Y.-P. Chiou, T.-Y. Cheng, and T.-L. Wu, “Power distribution network modeling for 3-D ICs with TSV arrays” in Proc. ASP-DAC 2013, Yokohama, Japan, Jan. 22–23, 2013, pp. 7–12.
[43]W. Yao, S. Pan, B. Achkir, J. Fan, and L. He, “Modeling and Application of Multi-Port TSV Networks in 3-D IC” IEEE Trans. Computer-Aided Design of Integrated Circuits and Syst., vol. 32, no. 4, pp. 487-496, Apr. 2013.
[44]K. Kim, C. Hwang, K. Koo, J. Cho, H. Kim, J. Kim, J. Lee, H.-D. Lee, K.-W. Park, and J. S. Pak, “Modeling and analysis of a power distribution network in TSV-based 3-D memory IC including P/G TSVs, on-chip decoupling capacitors, and silicon substrate effects” IEEE Trans. Compon., Packag. Manuf. Technol., vol. 2, no. 12, pp. 1744–1753, Dec. 2012.
[45]J. S. Pak, J. Kim, J. Cho, K. Kim, T. Song, S. Ahn, J. Lee, H, Lee, K. Park, and J. Kim, “PDN impedance modeling and analysis of 3D TSV IC by using proposed P/G TSV array modeling based on separated P/G TSV and chip-PDN models,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 1, no. 2, pp. 208-209, Feb. 2011.
[46]R.-B Wu, “Resistance modeling of periodically perforated mesh planes in multilayer packaging structures,” IEEE Trans. Comp. Hybrids, Manuf. Technol., vol. 12, no.3, pp. 365-372. Sept. 1989.
[47]H. Lee, K. Cho, H. Kim, S. Choi, J. Lim, H. Shim, and J. Kim, “Design and signal integrity analysis of high bandwidth memory (HBM) interposer in 2.5D terabyte/s bandwidth graphics module,” in Proc. IEEE 24th Electr. Perform. Electron. Packag. Syst. Conf., San Jose, CA, Oct. 26–29, 2015, pp. 145–147.
[48]K. Cho, Y. Kim, H. Lee, H. Kim, S. Choi, S. Kim, and J. Kim, “Design and analysis of power distribution network (PDN) for high bandwidth memory (HBM) interposer in 2.5D terabyte/s bandwidth graphics module,” in Proc. 66th IEEE Electron. Comp. Technol. Conf., Las Vegas, NV, May 31–June 3, 2016, pp. 407–412.
[49]M. Wojnowski, V. Issakov, G. Knoblinger, K. Pressel, G. Sommer, and R. Weigel, “High-Q inductors embedded in the fan-out area of an eWLB,” IEEE Trans. Compon., Packag. Manuf. Technol., vol. 2, no. 8, pp. 1280–1292, Aug. 2012.
[50]C.-T. Wang, J.-S. Hsieh, V. C. Y. Chang, E.-H. Yeh, F.-W. Kuo, H.-H. Chen, C.-H. Chen, R. Chen, Y.-T. Lu, C.-P. Jou, H.-Y. Tsai, C. S. Liu, D. C. H. Yu, “Power saving and noise reduction of 28nm CMOS RF system integration using integrated fan-out wafer level packaging (InFO-WLP) technology,” IEEE 2015 Int. 3D Syst. Integr. Conf., Sendai, Japan, Aug. 31–Sept. 2, 2015, pp. 106–109.
[51]C. C. Liu, S.-M. Chen, F.-W. Kuo, H.-N. Chen, E.-H. Yeh, C.-C. Hsieh, L.-H. Huang, M.-Y. Chiu, J. Yeh, T.-S. Lin, T.-J. Yeh, S.-Y. Hou, J.-P. Hung, J.-C. Lin, C.-P. Jou, C.-T. Wang, S.-P. Jeng, and D. C.-H. Yu, “High-performance integrated fan-out wafer level packaging (InFO-WLP): Technology and system integration,” in Proc. IEDM, San Francisco, CA, Dec. 10–13, pp. 14.1.1–14.1.4.
[52]N.-C. Chen, T.-H. Hsieh, J. Jinn, P.-H. Chang, F. Huang, JW Xiao, A. Chou, and B. Lin, “A novel system in package with fan-out WLP for high speed SERDES application,” in Proc. 66th IEEE Electron. Comp. Technol. Conf., Las Vegas, NV, May 31–June 3, 2016, pp. 1495–1501.
[53]D. Yu, “A new integration technology platform: integrated fan-out wafer-level-packaging for mobile applications,” in Proc. Int. Symp. VLSI Technol., Kyoto, Japan, June 16–18, 2015, pp. T46–T47.
[54]C.-F. Tseng, C.-S. Liu, C.-H. Wu, and D. Yu, “InFO (wafer level integrated fan-out) technology,” in Proc. 66th IEEE Electron. Comp. Technol. Conf., Las Vegas, NV, May 31–June 3, 2016, pp. 1–16.
[55]C.-T. Wang and D. Yu, “Signal and power integrity analysis on integrated fan-out PoP (InFO_PoP) technology for next generation mobile applications,” in Proc. 66th IEEE Electron. Comp. Technol. Conf., Las Vegas, NV, May 31–June 3, 2016, pp. 380–385.
[56]T. Nigussie and P. D. Franzon, “RDL and interposer design for DiRAM4 interfaces,” in Proc. IEEE 25th Electr. Perform. Electron. Packag. Syst. Conf., San Diego, CA, Oct. 23–26, 2016, pp. 14–17.
[57]J. Fang, Y. Liu, Y. Chen, Z. Wu, and A. Agrawal, “Modeling of power/ground plane noise in high-speed digital electronics packaging,” in Proc. IEEE 2nd Topical Meeting Elect. Perform. Electro. Packag., Monterey, CA, Oct. 20–22, 1993, pp. 206–208.
[58]T. K. Tang and E. G. Friedman, “Simultaneous switching noise in on-chip CMOS power distribution networks,” IEEE Trans. VLSI Syst., vol. 10, no. 4, pp. 487–493, Aug. 2002.
[59]Y. Shim, D. Oh, C. T. Khor, B. Dhavale, S. Chandra, D. Chow, W. Ding, K. Chand, A. Aflaki, and M. Sarmiento, “System-level clock jitter modeling for DDR systems,” in Proc. 63th IEEE Electron. Comp. Technol. Conf., Las Vegas, NV, May 28–May 31, 2013, pp. 1350–1355.
[60]K. Bharath, E. Engin, M. Swaminathan, K. Uriu, and T. Yamada, “Signal and power integrity co-simulation for multi-layered system on package modules,” in IEEE Int. Symp. Electromagn. Compat., Honolulu, HI, July 8-13, 2007, pp.1-6.
[61]M. Swaminathan and A. E. Engin, Power Integrity Modeling and Design for Semiconductor and Systems. Englewood Cliffs, NJ: Prentice-Hall, 2007, Ch. 1.
[62]M. Xu and T. H. Hubing, “Estimating the Power Bus Impedance of Printed Circuit Boards with Embedded Capacitance,” IEEE Trans. Adv. Packag., vol. 25, pp. 424-432, Aug. 2002.
[63]W. Cui, J. Fan, Y. Ren, H. Shi, J. Drewniak, and R. E. DuBroff, “DC power-bus noise isolation with power-plane segmentation,” IEEE Trans. Electromagn. Compat., vol. 45, no. 2, pp. 436–443, May 2003.
[64]I. Novak, “Reducing simultaneous switching noise and EMI on ground/power planes by dissipative edge termination,” IEEE Trans. Adv. Packag., vol. 22, pp. 274–283, Aug. 1999.
[65]T.-L. Wu, H.-H. Chuang, and T.-K. Wang, “Overview of power integrity solutions on package and PCB: decoupling and EBG isolation,” IEEE Trans. Electromagn. Compat., vol. 52, no. 2, pp. 346–356, May 2010.
[66]A. E. Engin and M. Swaminathan, “Power transmission lines: A new interconnect design to eliminate simultaneous switching noise,” in IEEE Electro. Compon. Technol. Conf., Lake Buena Vista, FL, May 27–30, 2008, pp. 1139–1143.
[67]S. L. Hun, M. Swaminathan, and D. Keezer, “Pseudo-balanced signaling using power transmission lines for parallel I/O links,” IEEE Trans. Electromagn. Compat., vol. 55, no. 2, pp. 315–327, Apr. 2013.
[68]S. Huh, M. Swaminathan, and D. Keezer, “Constant current power transmission line based power delivery network for single-ended signaling,” IEEE Trans. Electromagn. Compat., vol. 53, no. 4, pp. 1050–1064, Nov. 2011.
[69]M. Ramdani, E. Sicard, A. Boyer, S. Ben Dhia, J. J. Whalen, T. H. Hubing, M. Coenen, and O. Wada, “The electromagnetic compatibility of integrated circuits - past, present, and future,” IEEE Trans. Electromagn. Compat, vol. 51, pp. 78–100, Feb. 2009.
[70]Federal Communications Commission. [Online]:http://www.fcc.gov/.
[71]J. Fang, Y. Liu, Y. Chen, Z. Wu, and A. Agrawal, “Modeling of power/ground plane noise in high-speed digital electronics packaging,” in Proc. IEEE 2nd Topical Meeting Elect. Perform. Electro. Packag., Monterey, CA, Oct. 20–22, 1993, pp. 206–208.
[72]K. B. Hardin, J. T. Fessler, and D. R. Bush, “Spread spectrum clock generation for the reduction of radiated emissions,” in Proc. IEEE Int. Symp. Electromagn. Compat., Chicago, IL, Aug. 22–26, 1994, pp. 227–231.
[73]D. Panyasak, G. Sicard, and M. Renaudin, “A current shaping methodology for lowering EM disturbances in asynchronous circuits,” Microelectron. J., vol. 35, pp. 531–540, Jan. 2004.
[74]T. Sudo, “Behavior of switching noise and electromagnetic radiation in relation to package properties and on-chip decoupling capacitance,” in Proc. IEEE Int. Symp. Electromagn. Compat., Singapore, Feb. 27–Mar. 3, 2006, pp. 568–573.
[75]S.-H. Kim, S.-B. Lee, K.-I. Ouh, C.-B. Rim, K.-S. Moon, H.-G. Yoon, and T.-J. Moon, “Reduction of radiated emissions from semiconductor by using absorbent materials,” in Proc. IEEE Int. Symp. Electromagn. Compat., Washington, DC, Aug. 21–25, 2000, pp. 153–156.
[76]T.-L. Wu, Y.-H. Lin, T.-K Wang, C.-C. Wang, and S.-T. Chen, “Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 2935–2941, Sept. 2005.
[77]H. W. Shin and T. Hubing, “20-H rule modeling and measurements,” in Proc. IEEE Int. Symp. EMC, Montréal, QC, Canada, Aug. 13–17, 2001, pp. 939–942.
[78]S. Ikami and A. Sakurai, “Practical analysis on 20H rule for PCB,” in Proc. Asia-Pacific Symp. Electromagn. Compat., Singapore, May. 19–23, 2008, pp. 180–183
[79]S. Haga, K. Nakano, and O. Hashimoto, “Reduction in radiated emission by symmetrical power-ground layer stack-up PCB with no open edge,” in Proc. IEEE Int. Symp. Electromagn. Compat., Minneapolis, MN, pp. 262–267 , Aug. 2002.
[80]J. Kim, H. Kim, W. Ryu, and J. Kim, “Effects of on-chip and off-chip decoupling capacitors on electromagnetic radiated emission,” in Proc. 48th IEEE Electron. Comp. Technol. Conf., Seattle, WA, May 25–28, 1998, pp. 610–616.
[81]L. van Wershoven, “Characterization of an EMC test-chip,” in Proc. IEEE Int. Symp. Electromagn. Compat., Washington, DC, Aug. 21–25, 2000, pp. 117–121.
[82]L. D. Smith, R. E. Anderson, D. W. Forehand, T. J. Pelc, and T. Roy, “Power distribution system design methodology and capacitor selection of modern CMOS technology,” IEEE Trans. Adv. Packag., vol. 22, no. 3, pp. 284–291, Aug. 1999.
[83]Beyond DDR4: The differences between Wide I/O, HBM, and Hybrid Memory Cube, 2015. (https://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube/2)
[84]H. Hasegawa, M. Furukawa, and H. Yanai, “Properties of microstrip line on Si-SiO2 system,” IEEE Trans. Microw. Theory Tech., vol. 19, no. 11, pp. 869–881, Nov. 1971.
[85]D. K. Cheng, Field and Wave Electromagnetics. Hoboken, NJ: Wiley, 1996, chs. 3, and 6.
[86]H. A. Wheeler, “Formulas for the skin effect,” Proc. IRE, vol.30, pp.412–424, Sept. 1942.
[87]G. Katti, M. Stucchi, K. D. Meyer, and W. Dehaene, “Electrical modeling and characterization of through silicon via for three-dimensional ICs,” IEEE Tran. Electron Devices, vol. 57, no. 1, pp. 256–262, Jan. 2010.
[88]T. Y. Cheng, C. D. Wang, Y. P. Chiou, and T. L. Wu, “A new model for through-silicon vias on 3-D IC using conformal mapping method,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 6, pp. 303–305, June 2012.
[89]Q3D Extractor, Version 12.0, ANSYS, Inc. [Online]. Available: http://www.ansys.com
[90]D. M. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998.
[91]R.-B Wu, “Resistance modeling of periodically perforated mesh planes in multilayer packaging structures,” IEEE Trans. Comp. Hybrids, Manuf. Technol., vol. 12, no.3, pp. 365–372. Sept. 1989.
[92]J. Azémar, “Fan-out wafer-level-packaging: market and technology trends,” Int. Symp. Microelectron., vol. 2016, no. 1, 2016, pp. 176–179.
[93]Double Data Rate (DDR) SDRAM Specification, JEDEC Standard (2008, Feb.). [Online], Available: http://www.jedec.org.
[94]G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems 6th Ed., Pearson, 2010, Ch. 3
[95]S.-Y. Huang, T.-Y. Huang, C.-T. Liu, and R.-B. Wu, “Ringing noise suppression for differential signaling in unshielded flexible flat cable,” IEEE Trans. Compon., Packag. Manuf. Technol., vol. 5, no. 8, pp. 1152–1159, Aug. 2015.
[96]X. Ye, D. M. Hockanson, M. Li, Y. Ren, W. Cui, J. L. Drewniak, and R. E. DuBroff, “EMI mitigation with multilayer power-bus stacks and via stitching of reference planes,” IEEE Trans. Electromagn. Compat., vol. 43, pp. 538-548, Nov. 2001.
[97] C. A. Balanis, Antenna Theory – Analysis and Design, 2nd ed., John Wiley & Sons, Inc.,1997. ch.14.
[98] Y. T. Lo, D. Solomon, and W. F. Richards, “Theory and Experiment on Microstrip Antennas,” IEEE Trans. Antennas Propagt., vol. 27, no. 2, pp. 137-145, Mar. 1979.
[99] T. Fischer, M. Leone, and M. Albach, “An analytical model for studying the electromagnetic radiation of power-bus structures,” Proc. IEEE EMC Symp., Boston, MA, Aug. 18-22, 2003, pp. 225-230.
[100]K.-B. Wu, G.-H. Shiue, W.-D. Guo, C. M. Lin, and R.-B. Wu, “Delaunay-Voronoi modeling of power-ground planes with source port correction for chip package co-simulation,” IEEE Trans. Adv. Packag., vol. 31, no. 2, pp. 303-310, May 2008.
[101] R. F. Harrington, Time-Harmonic Electromagnetic Fields, A Classic Reissue, John Wiley & Sons, Inc., 2001, chs. 3 and 5.
[102] R. E. Collins, Field Theory of Guided Waves, 2nd ed., IEEE Press, 1991, chs. 4 and 7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top