(3.238.186.43) 您好!臺灣時間:2021/02/28 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林弘皓
研究生(外文):Hung-Hao Lin
論文名稱:應用於5G無線系統之毫米波65奈米CMOS混頻器及高線性度分佈式衍生疊加架構0.18毫米CMOS混頻器研究
論文名稱(外文):Research of Mixer for 5G Communications in 65 nm CMOS and High Linearity Distributed Derivative Superposition Mixer in 0.18 μm CMOS
指導教授:王暉
指導教授(外文):Huei Wang
口試日期:2017-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:100
中文關鍵詞:5G無線通訊CMOS次諧波混頻器Ka頻段馬遜式平衡與不平衡轉換器分佈式衍生疊加線性器K頻段
外文關鍵詞:5G wireless systemsCMOSsub-harmonicmixerKa-bandMarchand balundistributed derivative superposition linearizerK-band
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分成兩部分,在第一部分提出了一個以65 nm CMOS製程設計的38 GHz次諧波升頻混頻器,其中設計頻段為未來5G可行通訊頻段(38 GHz)。此次諧波混頻器在38 GHz射頻(RF)頻率、5 GHz基頻(IF)頻率以及5 dBm的本地振盪源(LO)之下,能夠提供5.3±1.2 dB之增益、-10 dBm的輸出1 dB功率壓縮點(OP1dB)以及高於50 dB的兩倍LO到RF頻率之隔離度。
在第二部分設計了一個以0.18 μm CMOS製程製作的24 GHz高線性度之降頻混頻器。利用分佈式衍生疊加的架構,能夠比傳統的衍生疊加架構擁有更好的效果。本混波器在經過線性化之後,在24 GHz射頻(RF)頻率以及5 dBm的本地振盪源(LO)之下,本混頻器能夠提供-4 dB之增益以及23 dBm之三階輸入截止點(IIP3),此三階輸入截止點為本頻段中所有已發表的CMOS線性化混頻器測試結果之中最好的。
There are many researches on millimeter-wave frond-end circuits for developing 5G wireless systems in recent years. The demands of high-speed internet and the shortage of the bandwidth have motivated the designers to explore millimeter wave (mm-wave) frequency with broader bandwidth for 5G cellular applications.
The thesis presents two design parts. In the first part, a 38 GHz sub-harmonic up-conversion mixer is designed and measured in 65 nm CMOS process. The frequency is at 38 GHz which is potential for 5G communication in the future. This sub-harmonic mixer provides 5.3±1.2 dB conversion gain with -10 dBm OP1dB, more than 50 dB 2*LO-to-RF isolation at RF frequency of 38 GHz and IF frequency of 5 GHz under 5 dBm LO pumping power.
In the second part, a high linearity down-conversion mixer with distributed deriva-tive superposition (DS) linearization technique in 0.18 μm CMOS process at 24 GHz is designed and measured. With the linearization, the mixer provides an acceptable gain of about -4 dB and the third-order input intercept point (IIP3) of the proposed mixer is achieves 23 dBm which is the best measured result among the previously works in K-band.
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 4
1.2.1 Ka-band and V-band Up-conversion Mixer in CMOS Process 4
1.2.2 K-band Down-conversion Mixer 6
1.3 Contributions 8
1.4 Thesis Organization 9
Chapter 2 Design of an 38-GHz Up-conversion Mixer in 65nm CMOS process 10
2.1 The Operating Principle of Sub-harmonic Mixer 10
2.2 Circuit Design of the 38-GHz Mixer 12
2.2.1 Compensated Marchand Balun [27] 12
2.2.2 Sub-harmonic Mixer 14
2.2.3 RF Buffer Amplifier 34
2.2.4 Overall Sub-harmonic Up-conversion Mixer 39
2.3 Experimental Results and Discussions 43
2.4 Summary 52
Chapter 3 Design of a High Linearity 24 GHz Down-conversion Mixer Using Distributed Derivative Superposition (DS) Technique in 0.18-μm CMOS Process 54
3.1 Linearity of System 54
3.2 Circuit Design of the 24 GHz Down-conversion Mixer 57
3.2.1 Distributed DS Technique 57
3.2.2 Gilbert-cell Down-conversion Mixer 61
3.3 Experimental Results and Discussions 81
3.4 Summary 90
Chapter 4 Conclusions 92
References 93
[1]A. Tang et al., "CMOS (Sub)-mm-Wave System-on-Chip for exploration of deep space and outer planetary systems," Proceedings of the IEEE 2014 Custom Inte-grated Circuits Conference, San Jose, CA, 2014, pp. 1-4.
[2]H. Kondoh, K. Sekine, S. Takatani, K. Takano, H. Kuroda, and R. Dabkowskki, “77-GHz fully-MMIC autootive forward-looking radar,” in 1999 GaAs IC Symp. Dig., pp. 211-214.
[3]E. Niehenke, P. Stenger, T. Mc Cormick, and C. Schwerdt, “A planar 94-GHz transceiver with switchable polarization,” in 2003 IEEE MTT-S Int. Microwave Symp. Dig., pp. 167-170.
[4]C. Hannachi, E. Moldovan and S. O. Tatu, "An improved-performance V-band six-port receiver for future 5G short-range wireless communications," 2017 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Phoenix, AZ, 2017, pp. 30-32.
[5]http://www.elva-1.com
[6]Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, Jun. 2011.
[7]T. S. Rappaport, G. R. MacCartney, Jr., M. K. Samimi, and S. Sun, “Wideband mil-limeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029–3056, Sept. 2015.
[8]G. R. MacCartney, Jr. et al., “Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks,” IEEE Access, vol. 3, pp. 2388–2424, Oct. 2015.
[9]M. K. Samimi, T. S. Rappaport, and G. R. MacCartney, Jr., “Probabilistic omnidi-rectional path loss models for millimeter-wave outdoor communications,” IEEE Wireless Communications Letters, vol. 4, no. 4, pp. 357–360, Aug. 2015.
[10]M. K. Samimi and T. S. Rappaport, “3-d statistical channel model for millime-ter-wave outdoor communications,” in 2015 IEEE International Conference on Communications (ICC), June 2015.
[11]M. K. Samimi and T. S. Rappaport, “Local multipath model parameters for gener-ating 5g millimeterwave 3gpp-like channel impulse response,” in 10th European Conference on Antennas and Propagation (EuCAP 2016), Apr. 2016.
[12]S. Nie, G. R. MacCartney, Jr., S. S., and T. S. Rappaport, “72 ghz millimeter wave indoor measurements for wireless and backhaul communications,” in 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communica-tions (PIMRC), Sept. 2013, pp. 2429–2433.
[13]T. S. Rappaport, G. R. MacCartney, M. K. Samimi and S. Sun, “Wideband milli-meter-wave propagation measurements and channel models for future wireless communication system design”, IEEE Trans. Commun.
[14]H. Shimomura, A. Matsuzawa, H. Kimura, G. Hayashi, T. Hirai, and A. Kanda, “A mesh-arrayed MOSFET (MA-MOS) for high-frequency analog applications,” in VLSI Tech. Symp. Dig., Jun. 1997, pp. 73–74.
[15]V. Aparin, G. Brown, and L. E. Larson, “Linearization of CMOS LNA’s via opti-mum gate biasing,” in IEEE Int. Circuits Syst. Symp., May 2004, vol. 4, pp. 748–751.
[16]Tae-Sung Kim and Byung-Sung Kim, "Linearization of differential CMOS low noise amplifier using cross-coupled post distortion canceller," in 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, 2008, pp. 83-86.
[17]K. Namsoo, V. Aparin, K. Barnett and C. Persico, "A cellular-band CDMA 0.25-µm CMOS LNA linearized using active post-distortion," IEEE Journal of Solid-State Circuits, vol. 41, no. 7, pp. 1530-1534, July 2006.
[18]V. Aparin and L. E. Larson, "Modified derivative superposition method for linear-izing FET low-noise amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 2, pp. 571-581, Feb. 2005.
[19]P. Mogensen et al., "5G small cell optimized radio design," 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, 2013, pp. 111-116.
[20]P. B. Papazian et al., “Initial Study of the Local Multipoint Distribution System Radio Channel”, NTIA Report 94-315, August 1994.
[21]C.-Y. Wang and J.-H. Tsai, “A 51 to 65 GHz low-power bulk-driven mixer using 0.13 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 521 – 523, Aug. 2009.
[22]L. Wei-Tsung, et al., “A 453-μW 53 - 70-GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1903-1912, May 2013.
[23]I. Rodriguez et al., “Analysis of 38 GHz mmWave Propagation Characteristics of Urban Scenarios,” European Wireless 2015; 21th European Wireless Conference; Proceedings of, Budapest, Hungary, pp. 1-8, 2015.
[24]J.-H. Tsai and T.-W. Huang, “35–65-GHz CMOS broadband modulator and de-modulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 55, no. 10, Oct. 2007.
[25]L. Sheng, J.-C. Jensen and L.-E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” IEEE Journal of Solid-State Cir-cuits, vol. 35, no. 9, pp. 1329-1337, Sept. 2000.
[26]P.-H. Tsai, C.-C. Kuo, J.-L. Kuo, S. Aloui and H. Wang, "A 30–65 GHz re-duced-size modulator with low LO power using sub-harmonic pumping in 90-nm CMOS technology," 2012 IEEE RFIC Symp., 2012, pp. 491-494.
[27]P.-H. Tsai, Y.-H. Lin, J.-L. Kuo, Z.-M. Tsai and H. Wang, "Broadband Balanced Frequency Doublers With Fundamental Rejection Enhancement Using a Novel Compensated Marchand Balun," IEEE Trans. on Microwave Theory and Tech-niques, vol. 61, no. 5, May 2013.
[28]N. Marchand, “Transmission line conversion transformers,” Electronics, vol. 17, no. 12, pp. 142–145, Dec. 1944.
[29]R. Michaelsen, T. Johansen and K. Tamborg, "Investigation of LO-leakage cancel-lation and DC-offset influence on flicker-noise in X-band mixers," 2012 7th Euro-pean Microwave Integrated Circuit Conference, 2012, pp. 99-102.
[30]Y.-H. Lin, J.-L. Kuo, and H.Wang, “A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique,” in Proc. Eur. Microw. Integr. Circuits Conf., Oct. 2012, pp. 491–494.
[31]Wei-Heng Lin, Wei-Lun Chang, Jeng-Han Tsai, and Tian-Wei Huang, “A 30-60GHz CMOS sub-harmonic IQ de/modulator for high data-rate communica-tion system applications,” in IEEE Radio and Wireless Symposium, 2009.
[32]P. S. Wu, C. H. Wang, C. S. Lin, K. Y. Lin, and H. Wang, "A Compact 60 GHz In-tegrated Up-Converter Using Miniature Transformer Couplers with 5 dB Conver-sion Gain," IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 641-643.
[33]W. H. Lin, H. Y. Yang, J. H. Tsai, T. W. Huang, and H. Wang, “1024- QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process,” IEEE Trans. Microwave Theory & Tech., vol. 61, no. 11, pp. 3974-3985, Nov. 2013.
[34]J. H. Tsai, P. S. Wu, C. S. Lin, T. W. Huang, J. G. J. Chern, W. C. Huang, and H. Wang, “A 25–75 GHz broadband Gilbert-cell mixer using 90-nm CMOS technolo-gy,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247–249, Apr. 2007.
[35]M. Parlak and J. F. Buckwalter, “A passive I/Q millimeter-wave mixer and switch in 45-nm CMOS SOI,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1131–1139, Mar. 2013.
[36]J. H. Tsai, “Design of 1.2 V broadband, high data-rate MMW CMOS I/Q modula-tor and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. The-ory Tech., vol. 59, no. 5, pp. 1350–1360, May 2011.
[37]W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M. Wu, and T.-W. Huang, “A 453-uW 53-70-GHz ultra-low-power double-balanced source-driven mixer using 90-nm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp. 1903–1912, May 2013.
[38]L. X. Shi, C. Chen, J. H. Wu, and M. Zhang, “A 1.5-V current mirror dou-ble-balanced mixer with 10-dBm IIP3 and 9.5-dB conversion gain,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 4, pp. 204–208, Apr. 2012.
[39]Y. M. Kim, H. Han, and T. W. Kin, “A 0.6-V +4 dBm IIP3 LC folded cascode CMOS LNA with gm linearization,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 3, pp. 122–126, Mar. 2013.
[40]C.-L. Wu, Y. H. Yun, C. Yu, and K. K. O, “High linearity 23-33 GHz SOI CMOS downconversion double balanced mixer,” Electron. Lett., vol. 47, no. 23, pp. 1283–1284, Nov. 2011.
[41]A. Khy, B. Huyart, and H. Teillet, “A highly linear (40.5–43.5) GHz MMIC single balanced pHEMT resistive up-converter mixer for LMDS applications,” in Proc. 38th Eur. Microw. Conf., Oct. 2008, pp. 418–421.
[42]C. Belkhiri, S. Toutain, and T. Razban, “A highly linear broadband common base mixer based on combination of active and resistive concepts,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2004, pp. 1133–1136.
[43]J. A. Garcia, J. C. Pedro, M. L. De La Fuente, N. B. De Carvalho, A. M. Sanchez, and A. T. Puente, “Resistive FET mixer conversion loss and IMD optimization by selective drain bias,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 12, pp. 2382–2392, Dec. 1999.
[44]S. Gunnarsson, K. Yhland, and H. Zirath, “pHEMT and mHEMT ultra wideband millimeterwave balanced resistive mixers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2004, pp. 1141–1144.
[45]W.-T. Li, J.-H. Tsai, H.-Y. Tang, W.-H. Chou, S.-B. Gea, H.-C. Lu, and T.-W. Huang, “Parasitic-insensitive linearization methods for 60-GHz 90-nm CMOS LNAs, ” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2512-2523, Aug. 2012.
[46]C. C. Lin and J. R. Yang, "A high linearity mixer using enhanced derivative super-position method for application in LTE small cell basestation," International Con-ference on Information Science, Electronics and Electrical Engineering, Sapporo, pp. 665-668, 2014.
[47]V. Aparin and L. E. Larson, “Modified derivative superposition method for linear-izing FET low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 571–581, Feb. 2005.
[48]V. Aparin and L. E. Larson, "Linearization of monolithic LNAs using low-frequency low-impedance input termination," ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705), Estoril, Portugal, 2003, pp. 137-140.
[49]V. Aparin, G. Brown and L. E. Larson, "Linearization of CMOS LNA''s via opti-mum gate biasing," 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), 2004, pp. IV-748-51 Vol.4.
[50]M. M. Mohsenpour and C. E. Saavedra, "Method to improve the linearity of active commutating mixers using dynamic current injection," 2016 IEEE MTT-S Interna-tional Microwave Symposium (IMS), San Francisco, CA, 2016.
[51]K. G. Kjelgård, T. S. Lande, "A K-band UWB receiver front-end with passive mixer in 90 nm CMOS," 2013 IEEE International Conference on Ultra-Wideband (ICUWB), Sydney, NSW, 2013, pp. 180-183.
[52]F. Zhu, W. Hong, J.-X. Chen, X. Jiang, K. Wu, P.-P. Yan, et al., "A broadband low-power millimeter-wave CMOS downconversion mixer with improved lineari-ty," IEEE Trans. on Circuits and Systems II, vol. 61 no. 3, pp. 138- 142, March 2014.
[53]C. l. Wu, Y. H. Yun, C. Yu and K. K. O, "High linearity 23-33 GHz SOI CMOS downconversion double balanced mixer," in Electronics Letters, vol. 47, no. 23, pp. 1283-1284, November 10, 2011.
[54]M. Bao, Y. Li, and A. Cathelin, “A 23 GHz active mixer with integrated diode lin-earizer in SiGe BiCMOS technology,” in 33rd Eur. Microw. Conf., Oct. 2003, pp. 391–393.
[55]M. Bao and Y. Li, “An active mixer topology for high linearity and high frequency applications,” in Eur. Microw. Integr. Circuit Conf., 2007, pp. 16–19.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔