跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭哲倫
研究生(外文):Che-Lun Kuo
論文名稱:以平行化有限差分時域法分析八木宇田類型奈米天線
論文名稱(外文):Analysis of Yagi-Uda Type Nanoantennas Using the Parallelized Finite-Difference Time-Domain Method
指導教授:張宏鈞
指導教授(外文):Hung-Chun Chang
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:94
中文關鍵詞:時域有限差分法遠場性質八木宇田天線球狀奈米天線
外文關鍵詞:FDTD methodFar-field propertyYagi-Uda antennaDual-Sphere nanoantenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
時域有限差分法已被廣泛運用在諸多模擬光電電磁計算上,我們以C++語言,自行開發時域有限差分模擬器,並且具有平行化功能,透過訊息傳遞介面協定,利用多台電腦平行處理加速運算,以減少運算時間。
本論文主要分析並探討金屬跟非金屬結構的奈米天線的遠場性質及其表現
差異,並專注在八木宇田天線的相關結構上。非金屬因為損耗性遠比金屬低,逐漸地受到了注目;八木宇田天線以強大的指向性為特點,但傳統八木宇田天線卻有著體積過大的缺陷導致應用受限。而奈米結構本身體積足夠小,可充分克服傳統八木宇田的問題。我們主要用寬頻點波源來取代平常用的平面波來凸顯其方向性的特點。我們分析球狀奈米天線,並比較金屬跟非金屬的差異,且將金屬結構置於基板上以增加實用性。之後還探討圓柱棍狀的八木宇田奈米天線,可以看到更進一步的方向性增強。
The finite-difference time-domain method (FDTD) has been widely used in computational electromagnetics. We developed a parallelized three-dimensional (3-D) FDTD simulator in C++ language. The message passing interface (MPI) protocol is applied to our simulator for parallelizing several computers in the computation in order to speed up the process and shorten the simulation time.
In this research, the main topic is to analyze the far-field properties of metallic and all-dielectric nano-antennas, and we focus on Yagi-Uda type structures. Due to low loss, the all-dielectric nano-antennas have earned much attention recently. Yagi-Uda antennas possess high directivity, however the large size of their structure is a major drawback. Yagi-Uda nano-antennas have relatively small size, thus it can avoid the size drawback. In this research, the wave source is a broadband single emitter. We analyze nano-antennas and discuss the difference between all-dielectric and metallic structures. Considering practical applications, we also study the Yagi-Uda nano-antennas on substrate. On the other hand, the Cylindrical-Rod Yagi-Uda nano-antennas are also investigated in this thesis.
致謝..I
摘要..II
ABSTRACT..III
LIST OF FIGURES..VI
Chapter 1 Introduction..1
1.1 Motivation .. 1
1.2 Introduction to Computational Electromagnetics .. 2
1.3 Chapter Outline .. 3
Chapter 2 The Finite-Difference Time-Domain Method ..5
2.1 The Yee Algorithm and Update Equation .. 5
2.2 The Courant Stability Limit .. 7
2.3 Dispersive Materials Model .. 8
2.3.1 The Drude Model .. 8
2.3.2 The Lorentz Model .. 10
2.3.3 The Auxiliary Differential Equation (ADE) Method .. 11
2.4 The Total-field / Scatter-field Technique .. 13
2.5 Convolutional Perfectly Matched Layer (CPML) .. 14
2.6 Periodic Boundary Conditions (PBCs) .. 16
2.7 Parallelized FDTD Method .. 16
2.8 Verification of Some FDTD Simulation Cases .. 18
2.8.1 Verification for 2-D Circular Cylinders .. 19
2.8.2 Verification for 3-D Silver Sphere .. 20
2.9 Validation of the Near-to-Far-Field Transformation .. 20
2.9.1 Radiation pattern .. 23
2.9.2 Directivity .. 25
Chapter 3 Yagi-Uda Sphere Nano-Antennas Excited by a Dipole
Emitter ..43
3.1 Dual-sphere Nano-Antennas.. 44
3.1.1 The comparisons between all-dielectric and metallic structure .. 45
3.1.2 The Metallic Dual-Sphere Nano-Antenna .. 46
3.2 Asymmetry Structure .. 47
3.2.1 Dual-sphers Nano-Antenna with Directors: All-Dielectric(Si) Case .. 48
3.2.2 Dual-sphere with Directors: The Metallic(Ag) case .. 49
3.2.3 The substrate in consideration .. 49
3.3 Electric and Magnetic Resonance in Particles .. 50
Chapter 4 Cylindrical-Rod Yagi-Uda nano-antenna excited by dipole
emitter ..69
4.1 Cylindrical-Rod Yagi-Uda Nano-antenna .. 69
4.1.1 Comparison between different length metallic Cylinder Nanoantenna .. 69
4.2 Cylindrical-Rod Yagi-Uda Nano-antenna With Hemisphers Ends .. 71
4.3 On the Substrate .. 72
Chapter 5 Conclusions..87
Bibliography ..90
[1]. Yuanqing Yang, Qiang Li, and Min Qiu, “Controlling the angular radiation of single emitters using dielectric patch nanoantennas,” Applied Physics Letters 107, 031109,2015.
[2]. T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A: Pure Appl. Opt. 9, S315-S321, 2007.
[3]. H. Fischer and O. J. Martin, "Engineering the optical response of plasmonic nanoantennas," Optics Express, vol. 16, pp. 9144-9154, 2008.
[4]. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, et al., "Near-field excitation of nanoantenna resonance," Optics Express, vol. 15, pp. 13682-13688, 2007.
[5]. J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Physical Review B, vol. 76, p. 245403, 2007.
[6]. O. Muskens, V. Giannini, J. Sßnchez-Gil, and J. Gˇmez Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Optics Express, 91
vol. 15, pp. 17736-17746, 2007.
[7]. J. Zhang, J. Yang, X. Wu, and Q. Gong, "Electric field enhancing properties of the V-shapedoptical resonant antennas," Optics Express, vol. 15, pp.16852-16859, 2007
[8]. L. Novotny, and N. van Hulst, “Antennas for light,” Nat. Photonics ,vol. 5, pp. 83–90, 2010
[9]. J. Dorfmuller, D. Dregely, M. Esslinger,W. Khunsin, R. Vogelgesang, K. Kern, and Harald Giessen, “Near-Field Dynamics of Optical Yagi-Uda Nanoantennas,” Nano Lett. vol. 11, pp. 2819–2824, 2011.
[10].O. C. Zienkiewicz and Y. K. Cheung, "Finite elements in the solution of field problems," The Engineer, vol. 220, pp. 507-510, 1965.
[11].M. Albani and P. Bernardi, "A Numerical Method Based on the Discretization of Maxwell Equations in Integral Form (Short Papers)," IEEE Transactions on Microwave Theory and Techniques, vol. 22, pp. 446-450, 1974.
[12].R. F. Harrington, "The method of moments in electromagnetics," Journal of Electromagnetic Waves and Applications, vol. 1, pp. 181-200, 1987.
[13].K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations," IEEE Transactions on Antennas Propagation, vol. 14, pp. 92 302-307, 1966.
[14]. T. Weiland, "A discretization model for the solution of Maxwell''s equations for six-component fields," Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116-120, 1977.
[15]. COMSOL. Available: http://www.comsol.com
[16]. MoM. Available: http://www.home.agilent.com
[17]. CST. Available: http://www.cst.com
[18]. Lumerical.Available: http://www.lumerical.com
[19]. A. Taflove and S. C. Hagness, "Computational electromagnetics: the finitedifference time-domain method," Artech House, 2005.
[20]. P. Drude, "Zur elektronentheorie der metalle," Annalen der Physik, vol. 306, pp. 566-613, 1900.
[21]. H. A. Lorentz, The Theory of Electrons: Teubner, 1906.
[22]. M. Okoniewski, M. Mrozowski, and M. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave and Guided Wave Letters, vol. 7, pp. 121- 123, 1997.
[23]. K. Umashankar and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," Electromagnetic Compatibility, IEEE 93 Transactions on, pp. 397-405, 1982.
[24]. J. A. Roden and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, vol. 27, pp. 334
[25]. B. W. Kernighan, D. M. Ritchie, and P. Ejeklint, The C programming Language vol. 2: prentice-Hall Englewood Cliffs, 1988.
[26]. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Annalen der Physik, vol. 330, pp. 377-445, 1908.
[27]. C. A. Balanis, Antenna Theory: Analyses and Design, John Wiley and Sons, Inc., Hoboken, New Jersey, 2005.
[28]. E. Palik, Handbook of Optical Constant of Solids, San Diego, Academic, 1985
[29]. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I.
Bozhevolnyi, and B. N. Chichkov, “Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region,” Nano Lett. vol. 12, pp.3749–3755, 2012.
[30]. Alexandr Krasnok, Constantin Simovski, Pavel Belov, and Yuri S. Kivshar, Nanoscale, vol. 6, 7354-7361, 2014.
[31]. J.D. Jackson, Classical Electrodynamics. New York : Wiley, 1998.
[32]. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, pp. 492, 2012.
[33].H. F. Hofmann, T. Kosako, and Y. Kadoya, "Design parameters for a nano-optical Yagi-Uda antenna," New J. Phys. vol. 9, pp. 217-217, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top