跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佳加
研究生(外文):Chia-Chia Lin
論文名稱:晶圓級構裝可調T型線圈式濾波器之研製
論文名稱(外文):Tunable Filter with T-coil Design on InFO-WLP
指導教授:吳瑞北
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:93
中文關鍵詞:可調帶通濾波器T型線圈模型晶圓集構裝集總元件濾波器基板合成波導濾波器變容二級體LTE頻帶
外文關鍵詞:Tunable Bandpass filterT-coil modelInFO-WLPLumped filterVaractor diodeSIW filterLTE band
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出以晶圓級構裝製程應用於5GHz到2.5GHz的可調T型線圈式濾波器電路設計。採用外接3組可變電容來達成可調範圍較寬的設計,此一設計擁有中心頻率可調、外部品質因子可補償、以及頻寬可調的特色。
設計一個模擬的程序,其模擬結果顯示,通帶頻率內最大損耗為3.48dB,濾波器尺寸為2.55mm × 1.42mm。由於晶片內的可變電容可調範圍有所限制,模擬結果可調範圍從5GHz到4GHz達20%,中心頻率損耗為3.55dB~3.98dB。
接著以實驗驗證,設計2.5GHz到1.25GHz的可調T型線圈式濾波器實驗,並利用20mil的Rogers Ro4003基板、表面黏著式陶瓷電容來進行實驗。反射損耗-15dB、比例頻寬5%下,可調範圍達50%,濾波器尺寸為16.4mm × 11.8mm,量測結果,中心損耗為1.7dB~2.66dB,此結果與模擬一致。
This thesis propose a tunable filter with T-coil circuit design whose tuning range is from 5GHz to 2.5GHz on InFO-WLP (Integrated Fan-Out Wafer-Level-Packaging). There are three sets of varactors to get wider tuning range so that the center frequency and external quality factor and bandwidth can be suitably tuned. A systematic design procedure has been set up and demonstrate the tunable filters of 3.48 dB in a compact size of 2.55mm×1.42mm. Due to the limited range of varactor value, simulated results show a tuning range of 20% from 5GHz to 4GHz, with insertion loss 3.55dB~3.98dB at center frequency .
For experimental validation, a tunable T-coil filter with tuning range from 2.5GHz to 1.25GHz is designed and fabricated in 20mil Ro4003 board and SMD MLCC Capacitors. According to FBW=5% and return loss=-15dB, tuning range is 50%; size is 16.4mm×11.8mm; the measurement result shows loss at center frequency is 1.7dB~2.66dB and in good agreement with the simulation results.
口試委員會審定書 I
致謝 II
摘要 III
ABSTRACT IV
第一章 緒論 1
1.1. 研究動機 1
1.2. 文獻回顧 3
1.3. 論文貢獻 4
1.4. 章節內容概述 5
第二章 基礎理論 6
2.1. 轉換函數 6
2.1.1. 基本定義 6
2.1.2. 柴比雪夫響應(Chebyshev Response) 7
2.2. 耦合共振電路理論 8
2.2.1. 電場性耦合 8
2.2.2. 磁場性耦合 10
2.2.3. 混和性耦合 12
2.2.4. 外部品質因子(External quality factor) 14
2.3. 導納反轉器(J-INVERTER) 16
2.3.1. 集總元件帶通濾波器模型 16
2.3.2. 末端耦合傳輸線模型 18
2.4. 基板合成波導模型 19
2.4.1. 共振頻率的選擇 19
2.4.2. 共振腔磁耦合機制 21
第三章 晶圓級濾波器的表現 22
3.1. 集總元件濾波器 24
3.1.1. 電感品質因子探討 24
3.1.2. 設計規格與參數 26
3.1.3. 平面電路結構與尺寸 27
3.1.4. 立體電路結構與尺寸 28
3.1.5. 模擬結果與損耗分析 29
3.2. 基板合成波導濾波器 31
3.2.1. 設計規格 31
3.2.2. 饋入電路設計 32
3.2.3. 耦合電路設計 33
3.2.4. 平面基板合成波導濾波器結構與尺寸 35
3.2.5. 共振腔加微帶線濾波器結構與尺寸 36
3.2.6. 模擬結果與討論 37
第四章 利用T型線圈模型於晶圓級構裝設計可調式濾波器 39
4.1. T型線圈式電路模型 40
4.2. 電路設計 42
4.2.1. 起始頻率5GHz濾波器電路設計 42
4.2.2. 可調式濾波器電路設計 44
4.3. 起始頻率5GHZ濾波器結構設計 46
4.3.1. 單位T型線圈結構 46
4.3.2. 電路結構與尺寸 49
4.3.3. 模擬結果 50
4.4. 可調式濾波器 51
4.4.1. 模擬設定 51
4.4.2. 電路結構 52
4.4.3. 模擬結果 55
4.4.4. 問題與討論一 56
4.4.5. 問題與討論二 59
4.4.6. 問題與討論三 60
第五章 利用T型線圈模型於印刷電路板設計可調式濾波器 65
5.1. 電路設計實驗設置與規格設定 65
5.2. 電路設計 66
5.2.1. 起始頻率2.5GHz電路設計 66
5.2.2. 外接電容 67
5.3. 2.5GHZ濾波器結構設計 70
5.3.1. 單位T型線圈結構 70
5.3.2. 電路結構與尺寸 73
5.3.3. 模擬與量測結果 74
5.4. 初始頻率2.5GHZ濾波器結構設計 77
5.4.1. 電路結構與尺寸 77
5.4.2. 模擬與量測結果 79
5.5. 可調式濾波器電路結構設計 81
5.5.1. 外接電容電路結構 81
5.5.2. 模擬與量測結果 81
第六章 結論 87
參考文獻 90
[1]Y. Jin, X. Baraton, S. W. Yoon, Y. Lin, and P. C. Marimuthu, “Next generation eWLB (embedded Wafer Level BGA) packaging,” in Proc. Electron. EPTC, pp. 520–526 , Dec. 2010.
[2]C.C. Liu, S.-M. Chen, F.-W. Kuo, H.-N. Chen, E.-H. Yeh, C.-C. Hsieh, L.-H. Huang, M.-Y. Chiu, Y., J., T.-S.Lin, T.-J. Yeh, S.-Y. Hou, J.-P. Hung, J.-C. Lin, C.-P. Jou, C.-T. Wang, S.-P. Jeng Y. and D.C.H., "High-performance integrated fan-out wafer level packaging (InFO-WLP): Technology and system integration," IEEE International Electron Devices Meeting (IEDM), pp.14.1.1-14.1.4, 10-13 Dec. 2012
[3]S.M. Chen; L.H. Huang; J.H. Yeh; Y.J. Lin; F.W. Kuo; H.N. Chen; M.Y.Chiu; C.C. Liu; J. Yeh; T.J. Yeh; S.Y. Hou; J.P. Hung; J.C. Lin; C.P. Jou; S.P. Jeng; D.Yu, "High-performance inductors for integrated fan-out wafer level packaging (InFO-WLP)," VLSI Technology (VLSIT), Symposium on , pp.T46-T47, 11-13 June 2013.
[4]C.-T. Wang, J.-S. H, V.r C. Y. Chang, E.-H. Yeh, F.-W. Kuo, H.-H. Chen, C.-H. Chen, R. Chen, Y.-T. Lu, C.-P. Jou, H.-Y. Tsai, C. S. Liu, D. C. H. Yu, "Power Saving and Noise Reduction of28nm CMOS RF System Integration Using Integrated Fan-Out Wafer Level Packaging (InFO-WLP) Technolog," IEEE International 3D Systems Integration Conference (3DIC), TS6.3.1 - TS6.3.4, 31 Aug. 2015-2 Sept. 2015
[5]C.-K. Shen, M.-H. Tsai, H.-N. Chen, C.-P. Jou, S. Liu, F.-L. Hsueh, and T.-L. Wu, " Design of On-Chip Microwave Filters in Integrated Fan-Out Wafer Level Packaging (InFO-WLP) Technology " , 2015 Asia-Pacific Symposium, APEMC ,26-29 May 2015,pp. 246 - 248
[6]Q. Y. Xiang , Q. Y. Feng , X. G. Huang and D. H. Jia "Electrical tunable microstrip LC bandpass filters with constant bandwidth", IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp.1124 -1130 2013
[7]H.-J. Tsai, N.-W. Chen and S.-K. Jeng, "Center frequency and bandwidth controllable microstrip bandpass filter design using loop-shaped dual-mode resonator," IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3590-3600, Oct. 2013.
[8]K. Zeng, D. Psychogiou, and D. Peroulis, “A VHF tunable lumped-element filter with mixed electric-magnetic couplings,” presented at the IEEE Wirel. Microw. Tech. Conf., Cocoa Beach, FL, USA, Apr.13–15, 2015
[9]H.-Y. Tsai, T.-Y. Huang, R.-B. Wu, “Varactor-Tuned Compact Dual-Mode Tunable Filter With Constant Passband Characteristics,” IEEE Trans. Packaging and Manufacturing Technology Vol. 6, no. 9, pp. 1399–1407, Sept. 2016
[10]C.-W. Tang, C.-T. Tseng, and S.-C. Chang, “Design of the compact tunable filter with modified coupled lines,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 4, no. 11, pp. 1815–1821, Nov. 2014.
[11]H. Tang, J.-X. Chen, L.-H. Zhou, and Z.-H. Bao, “Tunable dual-mode microstrip patch resonators and filters,” IET Microw. Antennas Propag., vol. 7, no. 6, pp. 408–414, Apr. 2013.
[12]Z.-H. Chen and Q.-X. Chu, “Wideband Fully Tunable Bandpass Filter Based on Flexibly Multi-Mode Tuning,” IEEE Microw. and Wireless Compon., vol. 26, no. 10, pp. 789–791, Oct. 2016.
[13]H. Zhu, A. Abbosh “Compact tunable bandpass filter with wide tuning range of centre frequency and bandwidth using coupled lines and shortended stubs,” IET Microw., Antennas Propag., vol. 10, no. 8, pp.863–870, May 2016.
[14]Y.-H. Cho and G. M. Rebeiz, “0.73–1.03-GHz tunable bandpass filter with a reconfigurable 2/3/4-pole response,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 2, pp. 290–296, Feb. 2014.

[15]Y.-C. Chiou and G. M. Rebeiz, “A tunable three-pole 1.5–2.2-GHz bandpass filter with bandwidth and transmission zero control,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 11, pp. 2872–2878, Nov. 2011.
[16]H. L. Peng, L. S. Wu, W. Y. Yin, D. Huo, and J. Mao, “Compact tunable bandpass filter with a fixed out-of-band rejection based on Hilbert fractals,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 3, no. 3, pp. 391–400, Mar. 2013.
[17]] Y.-C. Chiou and G. M. Rebeiz, “Tunable 1.55-2.1 GHz 4-pole elliptic bandpass filter with bandwidth control and >50 dB rejection for wireless systems,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 117–124, Jan. 2013
[18]D. Girbau, A. Lazaro, A. Perez, E. Martinez, L. Pradell, and R. Villarino, “Tunable dual-band filters based on capacitive-loaded stepped-impedance resonators,” in Proc. 39th Eur. Microw. Conf., Rome, Italy, Sep./Oct. 2009, pp. 113–116.
[19]C. F. Chen, “A compact reconfigurable microstrip dual-band filter using varactor-tuned stub-loaded stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 16–18, Jan. 2013.
[20]S. Sirci, J. D. Martínez, M. Taroncher, and V. E. Boria, “Varactor-loaded continuously tunable SIW resonator for reconfigurable filter design,” in Proc. 41st Eur. Microw. Conf., Manchester, U.K., Oct. 2011, pp. 436–439.
[21]I. Reines, A. Brown, M. El-Tanani, A. Grichener, and G. M. Rebeiz,“1.6–2.4 GHz RF MEMS tunable 3-pole suspended combline filter,” in Proc. IEEE Int. Microw. Symp., Atlanta, GA, USA, Jun. 2008, pp. 133–136.
[22]H. Uchimura, T. Takenoshita, and M. Fujii, “Development of a laminated waveguide,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2438–2443, Dec. 1998
[23]T.S. Homg, J.M. Wu, L.Q. Yang, and S.T. Fang, “A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth,” IEEE Trans Microwave Theory Tech.. vol. 51, pp. 2327-2333, Dec. 2003.
[24]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001
[25]D. M. Pozar, Microwave Engineering, 4nd ed., New York: Wiley, 2012
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top