跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳漢翔
研究生(外文):Han-Shiang Chen
論文名稱:預編碼正交頻分多址系統下相位雜訊估測及補償
論文名稱(外文):Phase Noise Estimation and Compensation in Precoded-OFDMA Wireless Systems
指導教授:蘇柏青
指導教授(外文):Borching Su
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:48
中文關鍵詞:毫米波相位雜訊正交頻分多址
外文關鍵詞:millimeter-wavephase noisesubbandOFDMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
毫米波通訊因為有很大的未使用頻譜,因此在未來的第五代移動通
訊系統下佔了一席地位。但是毫米波通訊也遇到射頻上的不完美,包
含非線性的功率放大器、IQ 不平衡、載波頻率偏移及相位雜訊。這篇
論文討論相位雜訊的問題。相位雜訊在通訊系統中會隨著時間改變,
即使通道完全沒有改變,依舊會影響通訊系統的表現。在毫米波的情
況下,因為相位雜訊所造成的影響更大,所以導致我們無法忽略它,
因此我們必須要一直去估測相位雜訊的數值和進行補償。除此之外,
因為無限通訊系統下多重存取的需求,我們必須要在不同裝置有不同
相位雜訊的情況下去估測所有裝置的相位雜訊。這篇論文我們提出了
一個方法,在只使用部分頻帶的情況下可以估測相位雜訊,而不用使
用全部的頻帶。我們提出的方法可以使用在多重存取的情況下並達到
令人滿意的表現。
In future 5G scenario, millimeter-wave(mmWave) wireless communication
systems play an important role due to its large unused bandwidth. However,
there are severe radio field(RF) impairments deteriorating the bit-errorrate
(BER) performance in mmWave communication including power amplifier
non-linearity, IQ imbalance, carrier frequency offset (CFO) and phase
noise. We focus on phase noise problem in the thesis. There will be an unknown
phase noise changing even if the channel doesn’t change from block
to block. The impact of phase noise in mmWave communication will be large
enough so we can’t ignore it. Hence we have to estimate and compensate the
effect of phase noise. Besides, due to the need of multiple access, we need
to deal with phase noise problem since every device has its own phase noise.
In the thesis we proposed a method to estimate phase noise in subband-based
wireless communication system. The method can be used to estimate and
compensate phase noise only using subband instead of whole band. With
this method, we can handle phase noise in multiple access scenario and get a
competitive performance to other work.
口試委員會審定書ii
誌謝iii
摘要iv
Abstract v
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contribution of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Notations of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 System Model 6
2.1 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Influence of Phase Noise . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Phase Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 System Model with Phase Noise . . . . . . . . . . . . . . . . . . 9
2.2.2 Subband-based System Model . . . . . . . . . . . . . . . . . . . 14
2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Proposed Method 18
3.1 Common Phase Error (CPE) compensation . . . . . . . . . . . . . . . . 19
3.2 Reduction of Unknown Phase Noise . . . . . . . . . . . . . . . . . . . . 24
3.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Transformation of System Model . . . . . . . . . . . . . . . . . 26
3.3.2 Estimating Unknown Data . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Estimating Phase Noise Terms . . . . . . . . . . . . . . . . . . . 27
3.3.4 Proposed Iterative Method . . . . . . . . . . . . . . . . . . . . . 28
4 Simulation Result 31
4.1 Simulation Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Conclusion 44
Bibliography 46
[1] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. T. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann. 5gnow: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2):97–105, February 2014.
[2] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez. Millimeter wave mobile communications for5g cellular: It will work! IEEE Access, 1:335–349, 2013.
[3] S. Rangan, T. S. Rappaport, and E. Erkip. Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3):366–385, March 2014.
[4] Y. Zou, P. Zetterberg, U. Gustavsson, T. Svensson, A. Zaidi, T. Kadur, W. Rave, and G. Fettweis. Impact of major rf impairments on mm-wave communications using ofdm waveforms. In 2016 IEEE Globecom Workshops (GC Wkshps), pages 1–7, Dec 2016.
[5] Stefania Sesia, Matthew Baker, and Issam Toufik. LTE-the UMTS long term evolution: from theory to practice. John Wiley & Sons, 2011.
[6] P. Robertson and S. Kaiser. Analysis of the effects of phase-noise in orthogonal frequency division multiplex (ofdm) systems. In Communications, 1995. ICC ’95 Seattle, ’Gateway to Globalization’, 1995 IEEE International Conference on, volume 3, pages 1652–1657 vol.3, Jun 1995.
[7] Q. Zou, A. Tarighat, and A. H. Sayed. Compensation of phase noise in ofdm wireless systems. IEEE Transactions on Signal Processing, 55(11):5407–5424, Nov 2007.
[8] Guanghui Liu and Weile Zhu. Compensation of phase noise in ofdm systems using an ici reduction scheme. IEEE Transactions on Broadcasting, 50(4):399–407, Dec 2004.
[9] P. Mathecken, T. Riihonen, S. Werner, and R. Wichman. Phase noise estimation in ofdm: Utilizing its associated spectral geometry. IEEE Transactions on Signal Processing, 64(8):1999–2012, April 2016.
[10] P. Mathecken, T. Riihonen, S. Werner, and R. Wichman. Constrained phase noise estimation in ofdm using scattered pilots without decision feedback. IEEE Transactions on Signal Processing, 65(9):2348–2362, May 2017.
[11] G. Sridharan and T. J. Lim. Performance analysis of sc-fdma in the presence of receiver phase noise. In 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, pages 1978–1982, Sept 2011.
[12] T. A. Thomas, M. Cudak, and T. Kovarik. Blind phase noise mitigation for a 72 ghz millimeter wave system. In 2015 IEEE International Conference on Communications (ICC), pages 1352–1357, June 2015.
[13] C. Zhang, Z. Xiao, L. Su, L. Zeng, and D. Jin. Iterative channel estimation and phase noise compensation for sc-fde based mmwave systems. In 2015 IEEE International Conference on Communication Workshop (ICCW), pages 2133–2138, June 2015.
[14] X. Cheng, N. Lou, and B. Yuan. Iterative decision-aided compensation of phase noise in millimeter-wave sc-fde systems. IEEE Communications Letters, 20(5):1030– 1033, May 2016.
[15] V. Syrjälä, T. Levanen, and M. Valkama. Methods for phase noise mitigation for dft-s-ofdm waveforms. In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 660–664, Dec 2016.
[16] Samsung. R1-163984 discussion on phase noise modeling. Ran#85, May 2016.
[17] C. Zhang, Z. Xiao, H. Wu, L. Zeng, and D. Jin. Performance analysis on the ofdm phy of ieee 802.11ad standard. In 2011 International Conference on Computational Problem-Solving (ICCP), pages 708–713, Oct 2011.
[18] Yuan-Pei Lin, See-May Phoong, and P. P. Vaidyanathan. Filter Bank Transceivers for OFDM and DMT Systems. Cambridge University Press, New York, NY, USA,2010.
[19] Y. C. Liao and K. C. Chen. Multiuser common phase error estimation for uplink ofdma communications. In 2007 IEEE Wireless Communications and Networking Conference, pages 1976–1981, March 2007.
[20] G. Sridharan and T. J. Lim. Blind estimation of common phase error in ofdm and ofdma. In 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, pages 1–5, Dec 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊