跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 08:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林郁晟
研究生(外文):Yu-Cheng Lin
論文名稱:可預測式合作式多點傳輸技術
論文名稱(外文):Predictive Coordinated Multipoint Transmission and Reception
指導教授:蘇炫榮
口試日期:2016-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:87
中文關鍵詞:預測都卜勒補償載波頻率偏移頻率同步合作式多基地台系統合作式多點傳輸技術
外文關鍵詞:PredictionDoppler CompensationCarrier Frequency O ffsetFrequency SynchronizationCoMPCoordinated Multiple BS System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中我們考慮一個合作式多基地台(BS)系統以及在其基地台之間獨立的載波頻率偏移(CFOs)和由高速可預測及低速不可預測用戶設備(UEs)所導致的都卜勒頻率偏移(DFOs)。載波頻率偏移效應所堆積的相位錯誤會惡化合作式系統的頻譜效率以及總系統速率。除此之外,都卜勒頻率偏移在高速移動的情況中像是高速鐵路(HSR)下是不可被忽略的。由於高速移動用戶設備的可預測性,這給予我們基於固定軌跡及準確時刻表的動機來建構出預測式資料庫,希望藉此來預補償都卜勒頻率偏移。我們擬議在多基地台端做估測以及校正不只是由用戶設備所引起的都卜勒頻率偏移以及基地台端所引起的載波頻率偏移。我們的方法始於基地台端的估測(UE Initiated)或是用戶設備端的估測(BS Initiated)來估計基地台的載波頻率偏移,其數值之後會被送至基地台端。由於用戶設備的高度可預測性,我們利用在基地台端的預測式資料庫來補償用戶設備所引起的都卜勒頻率偏移,以及當預測不準確時修正其資料庫。在研究結果中展示了我們所提倡的預測修正的迭代法會在數次迭代中收斂,以及提倡的頻率同步技術會得到好的系統表現。
We consider a coordinated multiple base station (BS) system and the associated problem of independent carrier frequency offsets (CFOs) at BSs as well as Doppler frequency offsets (DFOs) induced by both predictable high mobility and unpredictable low mobility user equipments (UEs). The effect of CFO causes accumulated phase errors which degrades the spectral efficiency and sum-rate of coordinated system. Besides, DFO is no longer negligible in high mobility condition such as high speed rail (HSR). Because of the highly predictable characteristic of high mobility UE, this motivates us to construct a prediction database based on fixed path and accurate time schedule for DFO pre-compensation. Our proposal is estimation and correction of both UE-induced DFO and BS-side CFO at the BSs. The method starts with formation of BS-side estimate (UE Initiated) or UE-side estimate (BS Initiated) of the BS CFOs, which is later fed back to BSs. Due to the fact that UE is highly predictable, we compensate the UE-induced DFO by prediction database at BSs and refine the database when our prediction is inaccurate. It is demonstrated that our proposed prediction refinement algorithm will converge within few iteration, and proposed frequency synchronization techniques achieves in good system performance.
1 Introduction 1
1.1 Coordinated Multi-point Transmission and Reception . . . . . 1
1.2 High-Speed Rail . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Carrier Frequency O set and Doppler Frequency O set . . . . 5
1.4 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Motivation and Proposed Predictive Method . . . . . . . . . . 8
1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 System Model and Problem Formulation 11
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Case 1: UE-induced DFO . . . . . . . . . . . . . . . . 18
2.3.2 Case 2: BS-side CFO . . . . . . . . . . . . . . . . . . . 20
2.3.3 Case 3: UE-induced DFO and BS-side CFO . . . . . . 22
3 Analysis of Case 1: UE-induced DFO 23
3.1 DFO in HSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Prediction Database . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Predictive DFO Compensation . . . . . . . . . . . . . . . . . . 28
4 Analysis of Case 2: BS-side CFO 32
4.1 Multiple CFO Estimation . . . . . . . . . . . . . . . . . . . . 32
4.2 Cram er-Rao Lower Bound . . . . . . . . . . . . . . . . . . . . 36
5 Analysis of Case 3: UE-induced DFO and BS-side CFO 38
5.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 UE Initiated Frequency Synchronization . . . . . . . . . . . . 41
5.3 BS Initiated Frequency Synchronization . . . . . . . . . . . . . 45
5.4 Decision Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 DFO Prediction Re nement . . . . . . . . . . . . . . . . . . . 49
5.6 Design of Stepsize and Threshold in DFO Prediction Re nement 55
6 Simulation Result 57
6.1 Environment Description . . . . . . . . . . . . . . . . . . . . . 57
6.2 Case 1: UE-induced DFO . . . . . . . . . . . . . . . . . . . . 61
6.2.1 Case 1 Simulation Result: DFO versus Normalized Distance
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.2 Case 1 Simulation Result: Sum-rate versus Time . . . 66
6.2.3 Case 1 Simulation Result: Sum-rate versus Normalized
Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.4 Case 1 Simulation Result: Sum-rate versus Number of
UE and BS . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Case 2: BS-side CFO . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.1 Case 2 Simulation Result: Sum-rate versus Number of
UE and BS . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Case 3: UE-induced DFO and BS-side CFO . . . . . . . . . . 74
6.4.1 Case 3 Simulation Result: Residual DFO versus Iteration
Times . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4.2 Case 3 Simulation Result: Sum-rate versus Number of
UE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4.3 Case 3 Simulation Result: Sum-rate versus Number of
BS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7 Conclusion 81
8 Future Work 83
Bibliography 84
[1] T. Nakamura, Proposal for candidate radio interface technologies for imt-advanced based on lte release 10 and beyond (lte-advanced)," ITU-RWP 5D 3rd Wksp. IMT-Advanced, Oct. 2009.

[2] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and K. Sayana, Coordinated multipoint transmission and reception in lte-advanced: deployment scenarios and operational challenges," IEEE Communications Magazine, vol. 50, no. 2, pp. 148{155, February 2012.

[3] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno,"Coordinated multipoint transmission/reception techniques for lte-advanced [coordinated and distributed mimo]," IEEE Wireless Communications, vol. 17, no. 3, pp. 26-34, June 2010.

[4] B. Ai, X. Cheng, T. Krner, Z. D. Zhong, K. Guan, R. S. He, L. Xiong, D. W. Matolak, D. G. Michelson, and C. Briso-Rodriguez, "Challenges toward wireless communications for high-speed railway," IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 5, pp. 2143-2158, Oct 2014.

[5] R. He, Z. Zhong, B. Ai, and J. Ding, "Measurements and analysis of short-term fading behavior for high-speed rail viaduct scenario," in 2012 IEEE International Conference on Communications (ICC), June 2012, pp. 4563-4567.

[6] R. He, Z. Zhong, B. Ai, and J.Ding, "Distance-dependent model of ricean k-factors in high-speed rail viaduct channel," in Vehicular Technology Conference (VTC Fall), 2012 IEEE, Sept 2012, pp. 1-5.

[7] R. He, Z. Zhong, B. Ai, L. Xiong, and H. Wei, "A novel path loss model for high-speed railway viaduct scenarios," in Wireless Communications, Networking and Mobile Computing (WiCOM), 2011 7th International Conference on, Sept 2011, pp. 1-4.

[8] 3GPP, "Technical speci cation group radio access network," Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception, Tech. Rep., 2016, [Online] Available: http://www.3gpp.org/dynareport/36104.htm.

[9] V. Kotzsch and G. Fettweis, "On synchronization requirements and performance limitations for comp systems in large cells," in Multi-Carrier Systems Solutions (MC-SS), 2011 8th International Workshop on, May 2011, pp. 1-5.

[10] B. Zariko and J. K. Cavers, "Carrier frequency o set in coordinated multibase mimo narrowband systems," in Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE, May 2008, pp. 872-877.

[11] B. W. Zariko and J. K. Cavers, "Coordinated multi-cell systems: Carrier frequency off set estimation and correction," IEEE Journal on Selected Areas in Communications, vol. 28, no. 9, pp. 1490-1501, December 2010.

[12] J. Du and Y. C. Wu, "Network-wide distributed carrier frequency o ffsets estimation and compensation via belief propagation," IEEE Transactions on Signal Processing, vol. 61, no. 23, pp. 5868-5877, Dec 2013.

[13] Y. Zhou, Z. Hou, Z. Pan, J. Shi, and J. Wang, "Dynamic doppler tracking for lte-based broadband communications on high speed rails," in Signal and Information Processing (ChinaSIP), 2013 IEEE China Summit International Conference on, July 2013, pp. 389-393.

[14] Q. Du, G. Wu, Q. Yu, and S. Li, "Ici mitigation by doppler frequency shift estimation and pre-compensation in lte-r systems," in Communications in China (ICCC), 2012 1st IEEE International Conference on, Aug 2012, pp. 469-474.

[15] B. Hui, J. Kim, H. S. Chung, I. G. Kim, and H. Lee, "Effi cient doppler mitigation for high-speed rail communications," in 2016 18th International Conference on Advanced Communication Technology (ICACT), Jan 2016, pp. 634-638.

[16] C. Botella, T. Svensson, X. Xu, and H. Zhang, "On the performance of joint processing schemes over the cluster area," in Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st, May 2010, pp. 1-5.

[17] H. Zhang and H. Dai, "Cochannel interference mitigation and cooperative processing in downlink multicell multiuser mimo networks," EURASIP Journal on Wireless Communications and Networking, vol. 2004, no. 2, pp. 222-235, 2004.

[18] P. Stoica and R. Moses, Introduction to Spectral Analysis. Upper Saddle River: Prentice Hall, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top