|
[1]D. M. Pozar, Microwave Engineering, 3^rd Ed. New York: Wiley, 1998. [2]K. Chang, RF and Microwave Wireless Systems, New York: Wiley, 2000. [3]R.-C. Liu, T.-P.Wang, L.-H. Lu, and H.Wang, “An 80 GHz traveling-wave amplifier in a 90 nm CMOS technology,” in IEEE Int. Solid-StateCircuits Conf. Tech. Dig., pp. 154–155, Feb. 2005. [4]J.-C. Chien and L.-H. Lu, "40Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-µm CMOS," IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2715-2725, Dec. 2007. [5]M.-D. Tsai, K.-L. Deng, H. Wang, C.-H. Chen, C.-S. Chang, and J.G. J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 14,no. 12, pp. 554–556, Dec. 2004. [6]K.-L. Deng, H. Wang, C. Glaser, and M. G. Stubbs, “A miniature high gain and broadband MMIC distributed amplifier,” in Proc. IEEE 〖33〗^rd Eur. Microwave Conf., pp. 615–618, Oct. 2003. [7]M.-D. Tsai, H. Wang, J.-F. Kuan, and C.-S. Chang, “A 70 GHz cascaded multi-stage distributed amplifier in 90 nm CMOS technology,” IEEE ISSCC Dig. Tech. Papers, pp. 402–403, Feb. 2005. [8]J.-C. Chien, T.-Y. Chen, and L.-H. Lu, "A 9.5-dB 50-GHz matrix distributed amplifier in 0.18-µm CMOS," in Symp. VLSI Circuits Dig. Tech. Dig., pp. 182-183, Jun. 2006. [9]A. Arbabian and A. M. Niknejad, “A broadband distributed amplifier with internal feedback providing 660GHz GBW in 90nm CMOS”, IEEE International Solid-State Circuits Conference, pp. 196-198, Feb. 2008. [10]H.-L. Huang, M.-F. Chou, W.-S. Wuen, K.-A. Wen, and C.-Y. Chang, “A low power CMOS distributed amplifier,” in The 2005 IEEE Annual Conference on Wireless and Microwave Technology, pp. 47– 50, Apr. 2005. [11]X. Guan and C. Nguyen, “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microwave Theory and Tech.,, Vol. 54, No. 8, pp. 3278-3283, Aug. 2006. [12]A. Kopa and A. Apsel, “Alternative m-derived termination for distributed amplifiers,” in IEEE MTT- Int. Microw. Symp. Dig., pp. 921–924, Jun. 2009. [13]C.-Y. Hsiao et al., “CMOS distributed amplifiers using gate–drain transformer feedback technique,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2901–2910, Aug. 2013. [14]J.-C. Kao et al., "A novel distributed amplifier with high gain low noise and high output power in 0.18-µm CMOS technology," IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1533-1542, Apr. 2013. [15]T.-U. Huang et al., "A high-gain low-noise distributed amplifier with low DC power in 0.18-µm CMOS for vital sign detection radar," in IEEE MTT-S Int. Microw. Symp. Dig., May 2015. [16]Y. J. Wang and A. Hajimiri, “A compact low-noise weighted distributed amplifier in CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 220–221, Feb. 2009. [17]S.-H. Chen et al., “A monolithic DC-70-GHz broadband distributed amplifier using 90-nm CMOS process,” in Microwave Conference (EuMC), 2013 European, pp. 1511–1514, Oct. 2013. [18]K. Entesari et al., “CMOS distributed amplifiers with extended flat bandwidth and improved input matching using gate line with coupled inductors,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 2862–2871, Dec. 2009. [19]L. Rakotondrainibe, Y. Kokar, G. Zaharia, G. El Zein, “60 GHz high data rate wireless communication system,” in Proc. IEEE Veh. Technl. Conf. (VTC), April 2009. [20]R.C. Daniels, R.W. Heath, “60 GHz wireless communications: emerging requirements and design recommendations,” in Proc. IEEE Veh. Technl. Conf. (VTC), Sept. 2007. [21]C. Yoo and Q. Huang, "A common-gate switched 0.9-W class-E power amplifier with 41% PAE in 0.25-um CMOS," IEEE J. Solid-State Circuits, vol. 36, pp. 823-830, May 2001. [22]J. Jeong, S Pornpromlikit, P. M. Asbeck, and D. Kelly, “A 20 dBm linear RF power amplifier using stacked silicon-on-sapphire MOSFETs,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 684–686, Dec. 2006. [23]S. Pornpromlikit, H. Dabag, B. Hanafi, J. Kim, L. E. Larson, J. F. Buckwalter, and P. M. Asbeck, “A Q-band amplifier implemented with stacked 45-nm CMOS FETs,” in IEEE Compound Semicond. Integr. Circuit Symp. Tech. Dig., pp. 1–4, Oct. 2011. [24]A. Agah, et al., “A 34% PAE, 18.6dBm 42-45GHz stacked power amplifier in 45nm SOI CMOS,” in IEEE RFIC Symposium, June 2012. [25]F. van Rijs, “Status and trends of silicon LDMOS base station PA technologies to go beyond 2.5 GHz applications,” in Radio Wireless Symp. , pp. 69–72, Jan. 2008. [26]R. Sorge, A. Fischer, P. Mai, P. Schley, J. Schmidt, C. Wipf, T. Mausolf, R. Pliquett, R. Barth, and K. Ehwald, “Complementary RF LDMOS module for 12 V DC/DC converter and 6 GHz power applications,” in IEEE Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 57–60, Jan. 2011. [27]D. Gruner, R. Sorge, O. Bengtsson, A. Al Tanany, G. Boeck” Analysis, design, and evaluation of LDMOS FETs for RF power applications up to 6 GHz,” IEEE Microwave Theory and Techn., vol. 58, pp. 4022-4030, Oct. 2010. [28]Huei Wang, Jeng-Han Tsai, Kun-You Lin, Zuo-Min Tsai, and Tian-Wei Huang, “MM-wave integration and combinations,” IEEE Microwave Magazine, vol. 13, no. 5, pp. 49-57, Jul. 2012. [29]C. Y Law and A.-V. Pham, "A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS," in Proc. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers (ISSCC), Feb. 2010. [30]C.-F. Chou, Y.-H. Hsiao, Y.-C. Wu, Y.-H. Lin, C.-W. Wu, and H. Wang, “Design of a V-Band 20-dBm wideband power amplifier using transformer-based radial power combining in 90-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4545-4560, Dec. 2016. [31]J.-F. Yeh, Y.-F. Hsiao, J.-H. Tsai, T.-W. Huang, “MMW ultra-compact N-way transformer PAs using bowtie- radial architecture in 65-nm CMOS,” IEEE Microw. Compon. Lett. (MWCL), vol. 25, no. 7, pp. 460-462, July 2015. [32]C.-W. Tseng, Y.-J. Wang, “A 60 GHz 19.6 dBm power amplifier with 18.3% PAE in 40 nm CMOS,” IEEE Microw. Compon. Lett. (MWCL), vol. 25, no. 2, pp. 121-123, Feb. 2015. [33]A. Hajimiri, “Fully integrated RF CMOS power amplifiers - a prelude to full radio integration,” in Digest IEEE Radio Frequency Integrated Circuit (RFIC) Symp., pp. 439-442, Jun. 2005. [34]I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, pp. 371-383, Mar. 2002. [35]G. Gonzalez, 2^nd Ed., Microwave transistor amplifier analysis and design. Taiwan : Pearson Education, 2008. [36]J. Chang, K. Kim, S. Lee, and S. Nam, “24 GHz stacked power amplifier with optimum inter-stage matching using 0.13 μm CMOS process,” in Proc. 3rd Int. Synthet. Aperture Radar (APSAR) Asia–Pacific Conf., pp. 1–3, 2011. [37]H. Dabag, et al., “Analysis and design of stacked-FET millimeter-wave power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1543–1556, Apr. 2013 [38]K. Guo, P. Huang, K. Kang, “A 60-GHz 1.2 V 21 dBm power amplifier with a fully symmetrical 8-way transformer power combiner in 90 nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2014. [39]A. Larie, E. Kerherve, B. Martineau, V. Knopik, D. Belot, “A 1.2V 20 dBm 60 GHz power amplifier with 32.4 dB gain and 20 % peak PAE in 65nm CMOS,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sept. 2014. [40]P. M. Farahabadi, and K. Moez, “A 60-GHz dual-mode distributed active transformer power amplifier in 65-nm CMOS,” in IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1909-1916, May 2016. [41]Y.-H. Hsiao, Z.-M. Tsai, H.-C. Liao, J.-C Kao, H. Wang, “Millimeter-wave CMOS power amplifiers with high output power and wideband performances,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4520-4533, Dec. 2013. [42]C. Y. Law and A.-V. Pham, “A high-gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 2010. [43]J. Chen and A.M. Niknejad, “A compact 1 V 18.6 dBm 60 GHz power amplifier in 65 nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 2011. [44]D. Zhao, P. Reynaert, “A 60-GHz dual-mode class AB power amplifier in 40-nm CMOS,” IEEE J. Solid-State Circuits (JSSC), vol. 48, no. 10, pp. 2323-2337, Oct. 2013. [45]M. Babaie, R. B. Stazewski, L. Galatro, M. Spirito, “A wideband 60 GHz class-E/F2 power amplifier in 40nm CMOS” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., May 2015. [46]S.R. Helmi, J.-H. Chen, S. Mohammadi, “A stacked cascode CMOS SOI power amplifier for mm-wave applications,” in IEEE MTT-S Int. Microw. Symp. Dig. June 2014.
|