跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 21:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳振緯
研究生(外文):Chen-Wei Wu
論文名稱:微波與毫米波分佈式放大器及變壓器之電壓式功率結合技術之堆疊式功率放大器研究
論文名稱(外文):Research of Microwave and Millimeter-Wave Distributed Amplifier and Stacked Power Amplifier Using Transformer-Based Voltage-Type Power Combining Technique
指導教授:王暉
指導教授(外文):Huei Wang
口試日期:2017-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:122
中文關鍵詞:互補式金氧半電晶體寬頻分部式放大器反饋堆疊式功率放大器功率結合V 頻段
外文關鍵詞:CMOSwidebanddistributed amplifierfeedbackstacked power amplifierpower combiningV band
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將介紹製作於互補式金氧半電晶體(CMOS FET)製程之低功耗和小晶片面積的分佈式放大器,與具有大功率輸出能力和小晶片面積的功率放大器。
首先提出的是由180奈米互補式金氧半電晶體製程所設計之傳統分佈式放大器(CDA)為架構,並以單級分佈式放大器(CSSDA)為其中增益元件,再利用反饋變壓器以達到訊號耦合的效益。其中增益頻寬積(GBW product),直流功耗和晶片面積為設計此分佈式放大器的考量。在利用反饋變壓器的情形下,此分佈式放大器可以在不影響特性表現的情況下,有降低直流功耗和達到縮小晶片面積的效果。此分佈式放大器可以達到12-dB的小訊號增益和33.5 GHz的頻寬(頻寬內增益變化大於3 dB),且直流功耗僅有69 mW,而晶片總面積只有0.72平方毫米。
接著是設計於60 GHz 的堆疊式功率放大器(stacked-PA),由65奈米互補式金屬氧化物半導體製程所實現,此設計中使用了變壓器之電壓式輸出結合器。此輸出結合器於60 GHz的操作頻率下只有0.9 dB之介入損耗及小的尺寸(0.02平方毫米),以用來提供高功率結合。採用堆疊式的功率放大器以提高元件的供應電壓和輸出功率。此功率放大器於60 GHz 的操作頻率下達到了22.8 dBm的飽和功率輸出、15.9 %之最大功率附加效率,其中不包含輸出變壓器所提供的損耗,而晶片核心面積僅為0.28平方毫米。
This thesis presents a CMOS compact and low dc power distributed amplifier (DA) and a CMOS power amplifier (PA) with high output power and compact size.
Firstly, the conventional distributed amplifier (CDA) with cascaded single-stage distributed amplifier (CSSDA) gain stage using the feedback transformer for signal-coupling purpose implemented in 0.18-μm CMOS is proposed. It takes considerations of gain-bandwidth (GBW) products, dc power consumption, and chip size. By using the feedback-transformer, this DA reduces dc power consumption and achieve a compact chip size while maintaining the gain and bandwidth performances. This DA achieves 12-dB gain and 33.5-GHz bandwidth, which the gain variation is over 3 dB, with total dc power of 69 mW and the compact size of 0.72 mm^2.
Secondly, the 60-GHz stacked-power amplifier implemented in 65-nm CMOS is designed with transformer (TF)-based voltage-type output combiner. This output combiner with only 0.9-dB insertion loss at 60 GHz and 0.02- mm^2 compact size is designed for high output power combining. The stacked-PA topology is adopted for increasing the supply voltage to the devices and the output power of the PA. The proposed power amplifier achieves saturated output power (P_SAT) of 22.8 dBm with 15.9% 〖PAE〗_max at 60 GHz excluding the loss of the output transformer and the chip size is only 0.28 mm^2 excluding the pads.
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Backgrounds and Motivations 1
1.2 Literature Surveys 2
1.2.1 Distributed Amplifiers 2
1.2.2 60-GHz CMOS PAs 3
1.3 Contributions 5
1.4 Thesis Organization 6
Chapter 2 A Compact and Low DC Power Distributed Amplifier with Cascaded Gain Stages Using Signal-Coupled Technique in 0.18-μm CMOS Process 8
2.1 Introduction 8
2.1.1 Architectures of Distributed Amplifier 9
2.1.2 Performance Improving Techniques for DAs 17
2.2 Circuit Design 22
2.2.1 Topology of Proposed DA 22
2.2.2 Circuit Design 24
2.2.3 Post-Layout Simulations 34
2.3 Experimental Results and Discussions 41
2.4 Summary 52
Chapter 3 A 60-GHz Transformer-Based Voltage-Type Combining Stacked Power Amplifier Design in 65-nm CMOS Process 53
3.1 Introduction 53
3.1.1 Circuit Solutions for High Supply Voltage 54
3.1.2 Power Combining Techniques for MMW PAs [28] 57
3.2 Circuit Design 62
3.2.1 Proposed PA Design 62
3.2.2 Transformer-Based Voltage-Type Output Combiner Design 85
3.2.3 Transformer Design 90
3.2.4 Post-Layout Simulations 96
3.3 Experimental Results and Discussions 103
3.3.1 Measurement Results of S-Parameters 103
3.3.2 Large-Signal Measurement 110
3.4 Summary 113
Chapter 4 Conclusions 115
References 117
[1]D. M. Pozar, Microwave Engineering, 3^rd Ed. New York: Wiley, 1998.
[2]K. Chang, RF and Microwave Wireless Systems, New York: Wiley, 2000.
[3]R.-C. Liu, T.-P.Wang, L.-H. Lu, and H.Wang, “An 80 GHz traveling-wave amplifier in a 90 nm CMOS technology,” in IEEE Int. Solid-StateCircuits Conf. Tech. Dig., pp. 154–155, Feb. 2005.
[4]J.-C. Chien and L.-H. Lu, "40Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-µm CMOS," IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2715-2725, Dec. 2007.
[5]M.-D. Tsai, K.-L. Deng, H. Wang, C.-H. Chen, C.-S. Chang, and J.G. J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 14,no. 12, pp. 554–556, Dec. 2004.
[6]K.-L. Deng, H. Wang, C. Glaser, and M. G. Stubbs, “A miniature high gain and broadband MMIC distributed amplifier,” in Proc. IEEE 〖33〗^rd Eur. Microwave Conf., pp. 615–618, Oct. 2003.
[7]M.-D. Tsai, H. Wang, J.-F. Kuan, and C.-S. Chang, “A 70 GHz cascaded multi-stage distributed amplifier in 90 nm CMOS technology,” IEEE ISSCC Dig. Tech. Papers, pp. 402–403, Feb. 2005.
[8]J.-C. Chien, T.-Y. Chen, and L.-H. Lu, "A 9.5-dB 50-GHz matrix distributed amplifier in 0.18-µm CMOS," in Symp. VLSI Circuits Dig. Tech. Dig., pp. 182-183, Jun. 2006.
[9]A. Arbabian and A. M. Niknejad, “A broadband distributed amplifier with internal feedback providing 660GHz GBW in 90nm CMOS”, IEEE International Solid-State Circuits Conference, pp. 196-198, Feb. 2008.
[10]H.-L. Huang, M.-F. Chou, W.-S. Wuen, K.-A. Wen, and C.-Y. Chang, “A low power CMOS distributed amplifier,” in The 2005 IEEE Annual Conference on Wireless and Microwave Technology, pp. 47– 50, Apr. 2005.
[11]X. Guan and C. Nguyen, “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microwave Theory and Tech.,, Vol. 54, No. 8, pp. 3278-3283, Aug. 2006.
[12]A. Kopa and A. Apsel, “Alternative m-derived termination for distributed amplifiers,” in IEEE MTT- Int. Microw. Symp. Dig., pp. 921–924, Jun. 2009.
[13]C.-Y. Hsiao et al., “CMOS distributed amplifiers using gate–drain transformer feedback technique,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2901–2910, Aug. 2013.
[14]J.-C. Kao et al., "A novel distributed amplifier with high gain low noise and high output power in 0.18-µm CMOS technology," IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1533-1542, Apr. 2013.
[15]T.-U. Huang et al., "A high-gain low-noise distributed amplifier with low DC power in 0.18-µm CMOS for vital sign detection radar," in IEEE MTT-S Int. Microw. Symp. Dig., May 2015.
[16]Y. J. Wang and A. Hajimiri, “A compact low-noise weighted distributed amplifier in CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 220–221, Feb. 2009.
[17]S.-H. Chen et al., “A monolithic DC-70-GHz broadband distributed amplifier using 90-nm CMOS process,” in Microwave Conference (EuMC), 2013 European, pp. 1511–1514, Oct. 2013.
[18]K. Entesari et al., “CMOS distributed amplifiers with extended flat bandwidth and improved input matching using gate line with coupled inductors,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 2862–2871, Dec. 2009.
[19]L. Rakotondrainibe, Y. Kokar, G. Zaharia, G. El Zein, “60 GHz high data rate wireless communication system,” in Proc. IEEE Veh. Technl. Conf. (VTC), April 2009.
[20]R.C. Daniels, R.W. Heath, “60 GHz wireless communications: emerging requirements and design recommendations,” in Proc. IEEE Veh. Technl. Conf. (VTC), Sept. 2007.
[21]C. Yoo and Q. Huang, "A common-gate switched 0.9-W class-E power amplifier with 41% PAE in 0.25-um CMOS," IEEE J. Solid-State Circuits, vol. 36, pp. 823-830, May 2001.
[22]J. Jeong, S Pornpromlikit, P. M. Asbeck, and D. Kelly, “A 20 dBm linear RF power amplifier using stacked silicon-on-sapphire MOSFETs,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 684–686, Dec. 2006.
[23]S. Pornpromlikit, H. Dabag, B. Hanafi, J. Kim, L. E. Larson, J. F. Buckwalter, and P. M. Asbeck, “A Q-band amplifier implemented with stacked 45-nm CMOS FETs,” in IEEE Compound Semicond. Integr. Circuit Symp. Tech. Dig., pp. 1–4, Oct. 2011.
[24]A. Agah, et al., “A 34% PAE, 18.6dBm 42-45GHz stacked power amplifier in 45nm SOI CMOS,” in IEEE RFIC Symposium, June 2012.
[25]F. van Rijs, “Status and trends of silicon LDMOS base station PA technologies to go beyond 2.5 GHz applications,” in Radio Wireless Symp. , pp. 69–72, Jan. 2008.
[26]R. Sorge, A. Fischer, P. Mai, P. Schley, J. Schmidt, C. Wipf, T. Mausolf, R. Pliquett, R. Barth, and K. Ehwald, “Complementary RF LDMOS module for 12 V DC/DC converter and 6 GHz power applications,” in IEEE Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 57–60, Jan. 2011.
[27]D. Gruner, R. Sorge, O. Bengtsson, A. Al Tanany, G. Boeck” Analysis, design, and evaluation of LDMOS FETs for RF power applications up to 6 GHz,” IEEE Microwave Theory and Techn., vol. 58, pp. 4022-4030, Oct. 2010.
[28]Huei Wang, Jeng-Han Tsai, Kun-You Lin, Zuo-Min Tsai, and Tian-Wei Huang, “MM-wave integration and combinations,” IEEE Microwave Magazine, vol. 13, no. 5, pp. 49-57, Jul. 2012.
[29]C. Y Law and A.-V. Pham, "A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS," in Proc. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers (ISSCC), Feb. 2010.
[30]C.-F. Chou, Y.-H. Hsiao, Y.-C. Wu, Y.-H. Lin, C.-W. Wu, and H. Wang, “Design of a V-Band 20-dBm wideband power amplifier using transformer-based radial power combining in 90-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4545-4560, Dec. 2016.
[31]J.-F. Yeh, Y.-F. Hsiao, J.-H. Tsai, T.-W. Huang, “MMW ultra-compact N-way transformer PAs using bowtie- radial architecture in 65-nm CMOS,” IEEE Microw. Compon. Lett. (MWCL), vol. 25, no. 7, pp. 460-462, July 2015.
[32]C.-W. Tseng, Y.-J. Wang, “A 60 GHz 19.6 dBm power amplifier with 18.3% PAE in 40 nm CMOS,” IEEE Microw. Compon. Lett. (MWCL), vol. 25, no. 2, pp. 121-123, Feb. 2015.
[33]A. Hajimiri, “Fully integrated RF CMOS power amplifiers - a prelude to full radio integration,” in Digest IEEE Radio Frequency Integrated Circuit (RFIC) Symp., pp. 439-442, Jun. 2005.
[34]I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, pp. 371-383, Mar. 2002.
[35]G. Gonzalez, 2^nd Ed., Microwave transistor amplifier analysis and design. Taiwan : Pearson Education, 2008.
[36]J. Chang, K. Kim, S. Lee, and S. Nam, “24 GHz stacked power amplifier with optimum inter-stage matching using 0.13 μm CMOS process,” in Proc. 3rd Int. Synthet. Aperture Radar (APSAR) Asia–Pacific Conf., pp. 1–3, 2011.
[37]H. Dabag, et al., “Analysis and design of stacked-FET millimeter-wave power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1543–1556, Apr. 2013
[38]K. Guo, P. Huang, K. Kang, “A 60-GHz 1.2 V 21 dBm power amplifier with a fully symmetrical 8-way transformer power combiner in 90 nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2014.
[39]A. Larie, E. Kerherve, B. Martineau, V. Knopik, D. Belot, “A 1.2V 20 dBm 60 GHz power amplifier with 32.4 dB gain and 20 % peak PAE in 65nm CMOS,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sept. 2014.
[40]P. M. Farahabadi, and K. Moez, “A 60-GHz dual-mode distributed active transformer power amplifier in 65-nm CMOS,” in IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 5, pp. 1909-1916, May 2016.
[41]Y.-H. Hsiao, Z.-M. Tsai, H.-C. Liao, J.-C Kao, H. Wang, “Millimeter-wave CMOS power amplifiers with high output power and wideband performances,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4520-4533, Dec. 2013.
[42]C. Y. Law and A.-V. Pham, “A high-gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 2010.
[43]J. Chen and A.M. Niknejad, “A compact 1 V 18.6 dBm 60 GHz power amplifier in 65 nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), Feb. 2011.
[44]D. Zhao, P. Reynaert, “A 60-GHz dual-mode class AB power amplifier in 40-nm CMOS,” IEEE J. Solid-State Circuits (JSSC), vol. 48, no. 10, pp. 2323-2337, Oct. 2013.
[45]M. Babaie, R. B. Stazewski, L. Galatro, M. Spirito, “A wideband 60 GHz class-E/F2 power amplifier in 40nm CMOS” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., May 2015.
[46]S.R. Helmi, J.-H. Chen, S. Mohammadi, “A stacked cascode CMOS SOI power amplifier for mm-wave applications,” in IEEE MTT-S Int. Microw. Symp. Dig. June 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊