跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王俊凱
研究生(外文):Jun-Kai Wang
論文名稱:應用於毫米波發射系統之高線性度及高功率放大器
論文名稱(外文):Design of Millimeter-wave High Linearity and High Power Amplifiers
指導教授:王暉
口試委員:黃天偉盧信嘉蔡政翰蔡作敏
口試日期:2017-01-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:109
中文關鍵詞:功率放大器線性放大器V頻段X頻段變壓器預失真技巧中和電容技巧頻寬GaN HEMT熱效應散熱
外文關鍵詞:High power amplifier (HPA)high linearity amplifier (HLA)V-bandX-bandtrans-formerspre-distortion techniqueneutralization techniquepower combiningband-widthGaN HEMT processthermal problemcooling technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這本論文中,展示兩個V頻段的功率放大器及線性器,還有一個X頻段的大功率放大器的設計與量測成果,其中前兩個V頻段放大器使用的是台積電40奈米的CMOS製程,另一個X頻段的放大器則是使用穩懋250奈米的氮化鎵(GaN)高速場效電晶體( HEMT)製程設計。
首先是應用於深耕計畫的60-GHz線性放大器,其規格要求主要是希望在功耗80 mW的情況下OP1dB能達到8 dB以上的輸出功率,因此此電路使用共源極 (Common source)架構,並使用變壓器來減少損耗、縮小面積、利用變壓器的高轉阻比特性使電路更好匹配等特性來達到輸出功率的合併,最後利用預失真 (Pre-distortion)的技巧,用增益換取OP1dB的改善,此電路設計過程中使用負轉導 (-gm)原件調整增益幅度,用並聯閘級端電容調整頻飄,如此可以使電路的量測與模擬相符,並在60 GHz達到11.8-dBm的PSAT、7.4-dBm的OP1dB、和23.8 dB的增益,另外如果將預失真 (Pre-distortion)電路中的偏壓從0.7 V調整為0.6 V,其會使增益下降但OP1dB會改善1.1 dB。
接著介紹60-GHz的功率放大器,其主要是希望增益能大於20 dB、飽合輸出功率大於20 dBm、效率大於20%,因此使用了共源極 (Common source)架構、8路的變壓器 (Transformer)功率合併以達到高輸出功率,並使用中和(Neutralization)電容的技巧提高增益和穩定度。此電路的模擬與量測結果相差不大,最後在60 GHz達到19.8 dBm的PSAT、18.3%的PAE,以及在54.5 GHz達到最高25.5 dB的增益,另外從51到62.4 GHz有11.4 GHz的3-dB增益頻寬。
最後則是10-GHz的大功率放大器,此放大器希望使用較簡單的架構來驗證穩懋的先進製程250-nm GaN HEMT,因此使用共源極 (Common source)架構維持線性度、2路的功率合併增加輸出功率、2級的放大器增加增益,並使用最簡單的傳輸線進行匹配,最後則是使用散熱PCB版的設計改善溫度過高的問題,使量測不會因為熱效應導致與模擬結果相差太多的情況發生,最後量測結果在10 GHz達到31 dBm的PSAT、28.9 dBm的OP1dB,以及在7.7 GHz達到最高20.6 dB的增益、另外從7到9 GHz有2 GHz的3-dB增益頻寬。
This thesis demonstrates the design and measurement results of three amplifiers which are V-band high linearity amplifier and power amplifier in 40-nm CMOS process and X-band high power amplifier in 250-nm GaN HEMT process.
The first part is a 60-GHz high linearity amplifier (HLA) with low power consump-tion. This design adopted the common source configuration to increase the linearity. The transformers are adopted to reduce the loss, size and increase the efficiency. The pre-distortion technique is also used to reduce gain expansion characteristic to compen-sate the gain compression of the PA. It can improve the OP1dB and linearity. This HLA achieves the measured saturated output power (PSAT) of 11.8 dBm, output 1-dB com-pression point (OP1dB) of 7.4 dBm, and 23.8-dB small signal gain with 11.4% peak power-added efficiencies (PAE) at 60 GHz. The pre-distortion circuit improves 1.1 dB of OP1dB at 60 GHz by revising the gate bias from 0.7 V to 0.6 V.
The next is a V-band transformer-based power amplifier (PA). It is a three-stage PA with eight-way transformer combining at output stage. This PA uses the transformers with dc path of metal-one and neutralization technique to improve the passive loss and asymmetric problem, as well as the gain and stability. This PA achieves the measured saturated output power (PSAT) of 19.8 dBm with 18.3% peak power-added efficiencies (PAE) at 60 GHz. The peak gain is 25.5 dB at 54.5 GHz with a 3-dB bandwidth of 11.4 GHz from 51 to 62.4 GHz.
The last part is a 10-GHz high power amplifier. It realizes in a simple architecture to verify the process of GaN HEMT. The common source configuration is used to maintain linearity. Two way output combining is adopted to increase the output power. Two stage design is adopted to increase the gain performance as well. In addition, the thermal problem should be resolved in high output power, and some cooling techniques are pre-sented in this design. This HPA achieves a measured PSAT of 31 dBm with 10.6% peak PAE at 10 GHz. The measured peak gain is 20.6 dB at 7.7 GHz with a 3-dB band-width of 2 GHz from 7 to 9 GHz.
CONTENTS
誌謝 ii
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xvii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 3
1.2.1 The V-band Power Amplifiers for Linearity 3
1.2.2 The V-band Power Amplifiers for Large Power and Efficiency 5
1.2.3 The X-band High Power Amplifiers 7
1.3 Contributions 9
1.4 Thesis Organization 10
Chapter 2 The V-band High Linearity Amplifier in 40-nm CMOS for Application of Transmitter 11
2.1 Introduction 11
2.1.1 Project Overview and Circuit Specification 11
2.1.2 The Linearization of Pre-distortion Technique 13
2.2 Circuit Design 14
2.2.1 Circuit Architecture 14
2.2.2 Device Selections 15
2.2.3 Circuit Design 19
2.2.4 Circuit Schematics 29
2.3 Simulation Results and Layout 31
2.4 Experimental Results 40
2.5 Discussion 43
2.6 Summary 44
Chapter 3 The V-band 40-nm CMOS Power Amplifier with Transformer and Neutralization Technique for High-Power and High-Efficiency 46
3.1 Introduction 46
3.1.1 Power Combining Techniques for MMW Power Amplifiers [21] 46
3.1.2 Transformer-Based Power Amplifiers Combining 48
3.2 V-band High-Power High-Efficiency Power Amplifiers Circuit Design 49
3.2.1 Circuit Architecture 49
3.2.2 Device Selections 51
3.2.3 Circuit Design 55
3.2.4 Circuit Schematics 62
3.3 Simulation Results and Layout 64
3.4 Experiment Results and Discussion 71
3.5 Summary 74
Chapter 4 The X-band Power Amplifiers in 250-nm GaN HEMT with Cooling Technique 76
4.1 Introduction 76
4.1.1 The Cooling Methods of Chip in High Power Level 76
4.2 X-band Power Amplifiers Circuit Design 77
4.2.1 Circuit Architecture 77
4.2.2 Device Selections 78
4.2.3 Circuit Design 81
4.2.4 Circuit Schematics 84
4.3 Simulation Results and Layout 86
4.4 Experiment results 92
4.5 Discussions 94
4.5.1 The Thermal Problem on the Chip 94
4.5.2 Cooling Technique 95
4.5.3 Re-Simulation 97
4.6 Summary 99
Chapter 5 Conclusions 101
References 103
[1]A. Tang, and M.-F. Chang, "Inter-modulated regenerative receivers operating at 349 GHz and 495 GHz for THz imaging in 40-nm and 65-nm CMOS technology" IEEE Transactions THz Science & Technology, vol. 3, no. 2, pp. 134-140, Feb. 2013.
[2]Y.-H. Hsiao, Z.-M. Tsai, H.-C. Liao, J.-C. Kao and H. Wang, "Millimeter-wave CMOS power amplifiers with high output power and wideband performances," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4520-4533, Dec. 2013.
[3]Z. Lin, P. I. Mak and R. P. Martins, "A sub-GHz multi-ISM-band ZigBee receiver using function-reuse and gain-boosted N-path techniques for IoT applications," IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2990-3004, Dec. 2014.
[4]M. Tabesh, N. Dolatsha, A. Arbabian and A. M. Niknejad, "A power-harvesting pad-Less millimeter-sized radio," IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 962-977, April 2015.
[5]S. Shakib, H. C. Park, J. Dunworth, V. Aparin and K. Entesari, "A 28GHz effi-cient linear power amplifier for 5G phased arrays in 28-nm bulk CMOS," ISSCC Dig. Tech. Papers, pp. 352-353, 2016.
[6]W. El-Halwagy, A. Nag, P. Hisayasu, F. Aryanfar, P. Mousavi and M. Hossain, "A 28GHz quadrature fractional-N synthesizer for 5G mobile communication with less than 100fs jitter in 65-nm CMOS," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 118-121, 2016.
[7]E. Kaymaksu, P. Reynaert, "A dual-mode transformer-based doherty LTE power amplifier in 40-nm CMOS", ISSCC Dig. Tech. Papers, pp. 64-65, Feb. 2014.
[8]Y. Cho, K. Moon, B. Park, J. Kim, and B.Kim, "Voltage-combined CMOS doherty power amplifier based on transformer," IEEE Transactions on Microwave Theory and Techniques, vol. 64, Issue: 11, Nov. 2016.
[9]H. Kim, D.-H. Lee, S. Hong, "A quasi-doherty SOI CMOS power amplifier with folded combining transformer," IEEE Transactions on Microwave Theory and Techniques, vol. 64, Issue: 8, Aug. 2016.
[10]K.-Y. Kao, Y.-C. Hsu, K.-W. Chen, and K. -Y. Lin, "Phasedelay cold-FET pre-distortion linearizer for millimeter-wave CMOS power amplifiers," IEEE Trans. Microw. Theory Tech., vol. 61, no. 12, pp. 4505--4519, Dec. 2013.
[11]Y.-C. Chen, Y.-T. Chang, and H.-C. Lu, “A K-band power amplifier with parasitic diode linearizer in 0.18-μm CMOS process using 1.8-V supply voltage,” Ra-dio-Frequency Integration Technology (RFIT), 2016 IEEE International Symposi-um on, 24-26 Aug. 2016
[12]J.-H. Tsai, C.-H. Wu, H.-Y. Yang, and T.-W. Huang, “A 60 GHz CMOS power amplifier with built-in pre-distortion linearizer,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 676-678, Dec. 2011.
[13]S. Kulkarni and P. Reynaert, “A push-pull mm-Wave power amplifier with <0.8°AM-PM distortion in 40-nm CMOS,” ISSCC Dig. Tech. Papers, pp. 252-253, Feb. 2014.
[14]A. Larie, E. Kerherve, B. Martineau, L. Vogt and D. Belot, “A 60GHz 28-nm UTBB FD-SOI CMOS reconfigurable power amplifier with 21% PAE,” ISSCC Dig. Tech. Papers, pp. 1-3, Feb. 2015.
[15]D. Zhao, P. Reynaert, "A 60-GHz dual-mode class AB power amplifier in 40-nm CMOS", IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2323-2337, Oct. 2013.
[16]A. Siligaris et al., “A 60GHz power amplifier with 14.5dBm saturation power and 25% peak PAE in CMOS 65-nm SOI,” IEEE J. Solid-State Circuits, vol.45, no.7, pp.1286-1294, July 2010.
[17]K. Raczkowski et al., “50-to-67 GHz ESD-protected, power amplifiers in digital 45-nm LP CMOS,” ISSCC Dig. Tech. Papers, Feb. 2009, pp. 382-383
[18]J.-A. Jayamon, J.-F. Buckwalter, P.-M. Asbeck, "A PMOS mm-wave power ampli-fier at 77 GHz with 90-mW output power and 24% efficiency", Radio Frequency Integrated Circuits Symposium (RFIC) 2016 IEEE, pp. 262-265, 2016, ISSN 2375-0995.
[19]K.-S. Yeh, “Design of 60 GHz bidirectional beamformer and switchless bidirec-tional amplifier” National Taiwan University Master Thesis 2016
[20]A. Hamidian, A. Malignaggi, G. Boeck, "High performance transformer based mm-wave CMOS power amplifier," Microwave Integrated Circuits Conference (EuMIC), 2013 European , pp.57,60, 6-8 Oct. 2013
[21]H. Wang, J.-H. Tsai, K.-Y. Lin, Z.-M. Tsai, and T.-W. Huang, “MM-wave integra-tion and combinations," IEEE Microwave Magazine, vol. 13, no. 5, pp. 49-57, Ju-ly/August 2012.
[22]H. Asada, K. Matsushita, K. Bunsen, K. Okada, A. Matsuzawa, "A 60GHz CMOS power amplifier using capacitive cross-coupling neutralization with 16 % PAE," Microwave Integrated Circuits Conference (EuMIC), 2011 European , pp.554,557, 10-11 Oct. 2011
[23]Y.-H. Hsiao, Z.-M. Tsai, H.-C. Liao, J.-C. Kao, H. Wang, "Millimeter-wave CMOS power amplifiers with High output power and wideband performances," Micro-wave Theory and Techniques, IEEE Transactions on , vol.61, no.12, pp.4520,4533, Dec. 2013
[24]J.-F. Yeh, J.-H. Tsai, T.-W. Huang, "A 60-GHz power amplifier design using du-al-radial symmetric architecture in 90-nm low-power CMOS," Microwave Theory and Techniques, IEEE Transactions on , vol.61, no.3, pp.1280,1290, March 2013
[25]C.-Y. Law and A.-V. Pham, “A high-gain 60 GHz power amplifier with 20-dBm output power in 90-nm CMOS,” ISSCC Dig. Tech. Papers, Feb. 2010, pp. 426-427.
[26]J. Chen and A.-M. Niknejad, “A compact 1 V 18.6-dBm 60-GHz power amplifier in 65-nm CMOS,” ISSCC Dig. Tech. Papers, Feb. 2011, pp. 432-433.
[27]K. Guo, P. Huang, K. Kang, "A 60-GHz 1.2 V 21-dBm power amplifier with a fully symmetrical 8-way transformer power combiner in 90-nm CMOS," IEEE MTT-S International Microwave Symposium Dig., June 2014
[28]Y. Zhao, J.-R. Long, "A wideband, dual-path, millimeter-wave power amplifier with 20-dBm output power and PAE above 15% in 130-nm Si-Ge-BiCMOS," Solid-State Circuits, IEEE Journal of , vol.47, no.9, pp.1981,1997, Sept. 2012
[29]D. Zhao, P. Reynaert, "A 60-GHz dual-mode class AB power amplifier in 40-nm CMOS," Solid-State Circuits, IEEE Journal of , vol.48, no.10, pp.2323,2337, Oct. 2013
[30]F. Shirinfar, M. Nariman, T. Sowlati, M. Rofougaran, R. Rofougaran, and S. Pa-marti, "A fully integrated 22.6-dBm mm-wave PA in 40-nm CMOS, " in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2013, pp. 1-4.
[31]D. Zhao, S. Kulkarni, P. Reynaert, "A 60 GHz dual-mode power amplifier with 17.4-dBm output power and 29.3% PAE in 40-nm CMOS," ESSCIRC (ESSCIRC), 2012 Proceedings of the , pp.337,340, 17-21 Sept. 2012
[32]S.-R. Helmi, J.-H. Chen, S. Mohammadi, "A stacked Cascode CMOS SOI power amplifier for mm-wave applications," IEEE MTT-S International Microwave Sym-posium Dig., June 2014.
[33]A. Larie, E. Kerherve, B. Martineau, V. Knopik, D. Belot, "A 1.2V 20-dBm 60-GHz power amplifier with 32.4 dB gain and 20 % peak PAE in 65-nm CMOS," European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014 - 40th , pp.175,178, 22-26 Sept. 2014
[34]S. Kulkarni, P. Reynaert, "A push-pull mm-wave power amplifier with <0.8° AM-PM distortion in 40-nm CMOS," ISSCC Dig. Tech. Papers, pp.252-253, Feb. 2014
[35]Y. Zhao, J.-R. Long, M. Spirito, "A 60GHz-band 20-dBm power amplifier with 20% peak PAE," Radio Frequency Integrated Circuits Symposium (RFIC), 2011 IEEE , pp.1,4, 5-7 June 2011
[36]A. Larie, E. Kerherve, B. Martineau, L. Vogt, D. Belot, "A 60-GHz 28-nm UTBB FD-SOI CMOS reconfigurable power amplifier with 21% PAE, 18.2-dBm P1dB and 74-mW PDC," ISSCC Dig. Tech. Papers, pp.1,3, 22-26 Feb. 2015
[37]C.-W. Tseng, Y.-J. Wang, "A 60 GHz 19.6-dBm power amplifier with 18.3% PAE in 40-nm CMOS," Microwave and Wireless Components Letters, IEEE , vol.25, no.2, pp.121,123, Feb. 2015
[38]J.-F. Yeh, “Research of 3-D dual-radial power combining technique” National Taiwan University PhD Thesis 2014
[39]C.-F. Chou, C.-W. Wu, Y.-H. Hsiao, Y.-C. Wu, Y.-H. Lin, H. Wang, “A 60-GHz 20.6-dBm symmetric radial-combining wideband power amplifier with 20.3% peak PAE and 20-dB gain in 90-nm CMOS,” IEEE MTT-S Internation-al Microwave Symposium Dig., May 2016
[40]G. Collins, J. Fisher, F. Radulescu, J. Barner, S. Sheppard, R. Worley, B. Woods, "C-band and X-band class F F-1 GaN MMIC PA design for envelope tracking systems", Microwave Conference (EuMC) 2015 European, pp. 1172-1175, 2015.
[41]B. Bolliger, et al, "Enhanced thermal management solutions for RF power amplifi-ers", 20l41MAPS Thermal Management ATW, Los Gatos, CA
[42]Near Junction Thermal Transport Program (NJTT)
[43]A. Bar-Cohen, K.J.L. Geisler, "Direct liquid cooling of 3D chip stacks", lnterPack 2011, Portland, OR
[44]Efficient Power Conversion Corporation website.
[45]C. Xie, R. Wilconxon, "Experimental evaluation of direct liquid cooling on GaN HEMT based power amplifier MMIC", IEEE MTT-S International Microwave Symposium Dig., May 2015
[46]V. Dupuy, N. Deltimple, E. Kerherve, J.-P. Plaze, Y. Mancuso, P. Garrec, M. Dem-atos, S. Aloui, "A compact wideband high power amplifier in GaN technology with 47% peak PAE," Wireless Symposium (IWS), 2014 IEEE International , pp.1,4, 24-26 March 2014
[47]R. Quaglia, V. Camarchia, M. Pirola, J.-J. Moreno Rubio, G. Ghione, "Linear GaN MMIC combined power amplifiers for 7-GHz microwave backhaul," Microwave Theory and Techniques, IEEE Transactions on , vol.62, no.11, pp.2700,2710, Nov. 2014
[48]Y.-S. Noh, Y.-H. Choi, I.-B. Yom, "Ku-band GaN HPA MMIC with high-power and high-PAE performances," Electronics Letters , vol.50, no.19, pp.1361,1363, September 11 2014
[49]C. Friesicke, A.-F. Jacob, R. Quay, "K-band power amplifiers in a 100-nm GaN HEMT microstrip line MMIC technology," Microwaves, Radar, and Wireless Com-munication (MIKON), 2014 20th International Conference on , pp.1,4, 16-18 June 2014
[50]G. Collins et al., "C-band and X-band class F, F-1 GaN MMIC PA design for en-velope tracking systems," Microwave Conference (EuMC), 2015 European, Paris, 2015, pp. 1172-1175.
[51]X. Yu, H. Sun, Y. Xu and W. Hong, "C-band 60 W GaN power amplifier MMIC designed with harmonic tuned approach," in Electronics Letters, vol. 52, no. 3, pp. 219-221, 2 4 2016.
[52]O. Silva, I. Angelov and H. Zirath, "4 W highly linear and reliable GaN power am-plifier for C-band applications," 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, 2015, pp. 1-3.
[53]G. van der Bent, P. de Hek, M. van der Graaf, and F. E. van Vliet, "50 Watt S-band power amplifier in 0.25 μm GaN technology," European Microwave Inte-grated Circuit Conference (EuMIC), 2014 9th, Rome, 2014, pp. 333-336.
[54]A. Alexander and J. Leckey, "A 120 watt GaN power amplifier MMIC utilizing harmonic tuning circuits for S-band applications," 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2015, pp. 1-3.
[55]C.-F. Campbell, S. Nayak, M.-Y. Kao, and S. Chen, "Design and performance of 16-40GHz GaN distributed power amplifier MMICs utilizing an advanced 0.15-µm GaN process," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-4.
[56]Y.-S. Noh, and I.-B. Yom, "Highly integrated C-Band GaN high power amplifier MMIC for phased array applications," Microwave and Wireless Components Letters, IEEE, vol. 25, pp. 406-408, 2015.
[57]P. Waltereit, J. Kuhn, R. Quay, F. van Raay, M. Dammann, M. Casar, et al., "High efficiency X-band AlGaN/GaN MMICs for space applications with lifetimes above 105 hours," in 2012 7th Euro. Microw. Integr. Circuits Conf. (EuMIC), 2012, pp. 123-126.
[58]N. Deltimple, V. Dupuy, E. Kerherve, B. Mallet-Guy, C. Auric, J.-P. Plaze, et al., "A compact fully integrated GaN high power amplifier for C-X band applications," in Radar Conference (Radar), 2014 International, 2014, pp. 1-4.
[59]C. Friesicke, J. Kuhn, P. Bruckner, R. Quay, and A.-F. Jacob, "An efficient Al-GaN/GaN HEMT power amplifier MMIC at K-Band," in Microwave Integrated Circuits Conference (EuMIC), 2012 7th European, 2012, pp. 131-134.
[60]C.-F. Campbell, K. Tran, K. Ming-Yih, and S. Nayak, "A K-Band 5W doherty am-plifier MMIC utilizing 0.15-µm GaN on SiC HEMT Technology," in Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012 IEEE, 2012, pp. 1-4.
[61]C. Friesicke, R. Quay, B. Rohrdantz, and A.-F. Jacob, "A linear 4W power amplifi-er at K-band using 250-nm AlGaN/GaN HEMTs," in Microwave Integrated Circuits Conference (EuMIC), 2013 European, 2013, pp. 157- 160.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊