跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 06:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖智賢
研究生(外文):Zhi-Xian Liao
論文名稱:基於協同雙臂機器人的反應向量力量/力矩阻抗控制
論文名稱(外文):Reaction Vector Based Force/Torque Impedance Control for Cooperative Dual Arm Robot
指導教授:羅仁權羅仁權引用關係
指導教授(外文):Ren C. Luo
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:138
中文關鍵詞:雙手臂機器人7自由度冗餘機器手臂避障反應向量系統雙手臂合作
外文關鍵詞:Dual arm manipulator7-DoF redundant manipulatorcollision avoidancereaction vector systemdual arms cooperation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著科技的進步、勞力成本的提升,產業自動化的需求有增加的趨勢。一開始產業會使用單臂機器人來取代生產線的人力,但生產過程中,許多技術人員雙手可以完成的動作,單臂機器人須倚靠額外的器具來輔助完成生產線上的任務,為解決這個問題,多台單臂機器人同時工作或是雙臂機器人的研究也隨之興起。其中又因為雙臂機器人成本較低、空間利用效率高、類似人的靈活性及高配合度,而成為主要的發展趨勢。人的雙手除了本身的靈活性外更因為可以合作而顯得萬能。在合作的同時,雙手臂運動過程中干涉及碰撞更是不能忽略的安全議題。
因此,本論文提出與實做一個可用於模組化雙七軸手臂機器人的合作系統,並且具有反應向量系統以防止雙手臂運動中互相產生碰撞,而整體的運動控制是以力矩阻抗控制為基礎,透過視覺感測器來偵測判斷雙臂機器人要執行的任務,是要合力夾取單一物體,抑或是分別各夾取一個物體再做對應的動作,而此決策系統會定義手臂及待夾取零件的位勢,此位勢的定義會影響反應向量的引力向量或斥力向量,進而讓反應向量系統產生運動的軌跡,在手臂的運動過程中,本論文提出的反應向量系統會偵測雙手臂碰撞的可能,並因應產生可以避開另一隻手臂的向量,透過系統中已設計好的線上軌跡產生器來產生軌跡,最後透過阻抗控制外加一牽引力矩成為的阻抗力矩控制來控制各軸馬達,使雙手臂都能完成所預期的動作及任務。
With the advantage of technology and increasing of labor cost, there is an increasing tend in industrial automation. At the beginning, the industry use single-arm robot to replace employees of production line. However, there are many motion which human can achieve but single-arm robot can’t. They need another holder or aids to help them finishing the mission. In order to solve this problem, the research of multi robots synchronized working and the research of dual-arm robot emerge along with it. Because of the low cost of dual-arm robot, high space utilization, the anthropomorphic dexterity, and anthropomorphic high coordination degree, the dual-arm robot become the main trend of development. In addition to having dexterous arms, dual-arm cooperation makes human arms more omnipotent. The safety issue of collision avoidance can’t be ignored when dual arms are cooperating.
Therefore, this thesis proposes and implements a cooperation system for a modularized 7 degrees of freedom dual-arm manipulator, which have a reaction vector system to detect the risk of collision and avoid the collision. And the motion of the dual-arm manipulator is based on impedance torque control. Through the vision sensor, the dual-arm manipulator can detect and decide the mission. Is the mission that the dual arms need to cooperate gripping the component? Or is the mission that each arm needs to grip one component and then does the corresponding motion? And this decision system defines the potential of dual arms and the components. The potential will make the reaction vector system produce the attractive vector or the repulsive vector between the two. And then the vectors make the reaction vector system produce a movement trajectory. In the process of motion, the reaction vector system which this thesis proposed can detect the risk of the dual arm collision and produce the corresponding vector to dodge the other arm. Then the vector-based online trajectory generator is provided in the reaction vector system to smooth jerky commands. At last, applying an external guiding torque to the impedance control becomes the impedance torque control, and control the each motor of axis to reach the angle which we want. The dual-arm manipulator also finish the mission.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Chapter 1 Introduction 1
1.1. History 1
1.1.1. Industrial robot arms 1
1.1.2. Modular robots 5
1.1.3. Collaborative robots 6
1.2. Motivation and Objective 7
1.3. Literature Review 7
1.4. Thesis Structure 12
Chapter 2 Modularized 7-DoFs Dual-Arm Robot 14
2.1 Mechanical Design of Dual-Arm Robot 15
2.1.1. Design of Modular Robot Joint 16
2.1.2. Modular Actuator Dual-Arm Robot 20
2.1.2.1. Bilateral Symmetrical Articulated robot arm 22
2.1.2.2. Bilateral Asymmetrical Articulated robot arm 26
2.1.2.3. Head with Microsoft Kinect RGBD sensor 29
2.1.2.4. Kinect RGBD sensor 30
2.1.2.5. Robotiq Adaptive Gripper 33
2.2 Communication and Real-Time Operating System 38
2.2.1. EtherCAT 38
2.2.2. Real-Time Operating System (RTOS) 39
2.2.3. Distributed Motion Control System 41
Chapter 3 Kinematics of Manipulator 44
3.1. Spatial Descriptions and Transformation 44
3.1.1. Transformation matrix 44
3.1.2. Three-Angle Representation 45
3.1.3. Angle–Axis Representation 45
3.2. Differential Motion 50
3.3. Forward Kinematics 52
3.3.1. Forward Kinematics of Manipulators 52
3.3.2. Velocity Relationship: The Manipulator Jacobian 54
3.3.3. Kinematics Model of Modularized 7-DoFs Dual-Arm Robot 56
3.4. Inverse Kinematics of Manipulator 60
3.4.1. Numerical Solution 60
3.4.1.1. Jacobian Linearization Method 60
3.4.1.2. Singularity Avoidance Method: Damped Least Squares (DLS) 61
3.4.1.3. Joint Limit Avoidance Method: Weighted Least Norm (WLN) 62
3.4.2. Analytical Solution 64
3.4.2.1. Closed-Form Solution of 6-DoFs Manipulator 64
3.4.2.2. Analytic Solution for 7-DoFs Bilateral Symmetrical Articulated Robot Arm 68
3.4.2.3. Analytic Solution for 7-DoFs Bilateral Asymmetrical Articulated Robot arm 71
Chapter 4 Overall System Structure 76
4.1. Overall System Structure 76
4.2. Dual-Arm Robot Self-Collision Avoidance 79
4.3. Dual-Arm Robot Cooperation 79
Chapter 5 Reaction Vector System 81
5.1. Problem Statement 81
5.2. Arm Localization 81
5.3. Collision Detection 83
5.4. Reaction Vector Generator 84
5.4.1. Attractive Vector Generator 84
5.4.2. Repulsive Vector Generator 86
5.4.2.1. Repulsive Vector of Tip (RVT) 87
5.4.2.2. Repulsive Vector of Body ( RVB) 88
5.5. Vector-based Online Trajectory Generator 91
Chapter 6 Force/Torque Impedance Control System 92
6.1. Impedance Control 93
6.2. Force/Torque Impedance Control 94
6.2.1. Force/Torque Impedance Control Law 94
6.2.2. External Guiding Force/Torque 96
6.2.3. Gravity Compensation 98
Chapter 7 Potential Decision System 102
7.1. Object recognition 102
7.2. Potential Decision 103
Chapter 8 Experimental Results 104
8.1. Force/Torque Impedance Control 104
8.2. Dual-Arm Robot Self-Collision Avoidance 118
8.3. Dual-Arm Robot Cooperation 127
Chapter 9 Conclusions and Contributions 129
Chapter 10 Future Works 131
REFERENCE 132
VITA 138
[1]Anthony A.Maciejewski, and Charles A. Klein, "Obstacle avoidance for kinematically redundant manipulators in dynamical varying environments" The International Journal of Robotics Research, pp.109-116, April 1985.
[2]J. Baillieul, "Avoidance obstacles and resolving kinematic redundancy," IEEE International Conference on Robotics and Automation, pp. 1698-1704, 1986.
[3]R. Stevenson, B. Shirinzadeh, and G. Alici, "Singularity avoidance and aspect maintenance in redundant manipulators," IEEE International Conference on Control, Automation, robotics and Vision, vol. 2, pp. 857-862, Dec. 2002.
[4]Rajiv V. Dubey, James A. Euler, and Scott M. Babcock, “Real-time implementation of an optimization scheme for seven-degree-of-freedom redundant manipulators,” IEEE Transactions on Robotic, vol7, no. 5, pp. 579-588, October 1991.
[5]Mitesh Shah and Patel R V, “Inverse Jacobian based hybrid impedance control of redundant manipulators,” IEEE International Conference on Mechatronics and Automation, pp. 55-60, 2005.
[6]Huang Leiguang and Li Yaotong, “Repeatable kinematic control of redundant manipulators,” International Conference on Advanced Robotics Proceedings, pp. 147-152, 1997.
[7]Ji Xiang, Congwei Zhong, and Wei Wei, “General-weighted least-norm control for redundant manipulators,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 660-669, August 2010.
[8]M. Shimizu, H. Kakuya, W. K.Yoon, K. Kitagaki, and K. Kosuge, "Analytical inverse kinematic computation for 7-dof redundant manipulators with joint limits and its application to redundancy resolution," IEEE Transaction on Robotics, vol. 24, no. 5, Oct. 2008.
[9]H. Moradi and S. Lee,"Joint limit analysis and elbow movement minimization for redundant manipulators using closed form method,"Springer Advances in Intelligent Computing Lecture Notes in Computer Science, vol. 3645, pp. 423-432, 2005.
[10]C. Yu, M. Jin, and H. Liu,"An analytical solution for inverse kinematic of 7-DOF redundant manipulators with offset-wrist,"IEEE International Conference on Mechatronics and Automation, pp. 92-97, Chengdu, China, Aug., 2012.
[11]Giresh K. Singh and Jonathan Claassens, ” An Analytical Solution for the Inverse Kinematics of a Redundant 7DoF Manipulator with Link Offsets “IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp.2976-2982, Oct. 18-22, 2010.
[12]B. Tondu, "A closed-form inverse kinematic modelling of a 7R anthropomorphic upper limb based on a joint parametrization," IEEE International Conference on Humanoids, Genova, Italy, pp. 390-397, Dec. 4-6, 2006.
[13]Barraquand, Jerome, and Jean-Claude Latombe. "Robot motion planning: A distributed representation approach." The International Journal of Robotics Research 10.6 (1991): 628-649.
[14]Erdmann, Michael, and Tomas Lozano-Perez. "On multiple moving objects."Algorithmica 2.1-4 (1987): 477-521.
[15]Li, Tsai-Yen, and Jean-Claude Latombe. "On-line manipulation planning for two robot arms in a dynamic environment." The International Journal of Robotics Research 16.2 (1997): 144-167.
[16]Sharir, Micha, and Shmuel Sifrony. "Coordinated motion planning for two independent robots." Annals of Mathematics and Artificial Intelligence 3.1 (1991): 107-130.
[17]Tournassoud, Pierre. "A strategy for obstacle avoidance and its application to mullti-robot systems." Robotics and Automation. Proceedings. 1986 IEEE International Conference on. Vol. 3. IEEE, 1986.
[18]Akella, Srinivas, and Jufeng Peng. "Time-scaled coordination of multiple manipulators." Robotics and Automation, 2004. Proceedings. ICRA''04. 2004 IEEE International Conference on. Vol. 4. IEEE, 2004.
[19]Kant, Kamal, and Steven W. Zucker. "Toward efficient trajectory planning: The path-velocity decomposition." The International Journal of Robotics Research5.3 (1986): 72-89.
[20]Buckley, Stephen J. "Fast motion planning for multiple moving robots."Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on. IEEE, 1989.
[21]Chuang, Jen-Hui, Chien-Chou Lin, and Tsun-Hou Chou. "An alternate priority planning algorithm for dual-arm systems." Industrial Electronics, 2006 IEEE International Symposium on. Vol. 4. IEEE, 2006.
[22]Chang, Cheol, Myung Jin Chung, and Bum Hee Lee. "Collision avoidance of two general robot manipulators by minimum delay time." Systems, Man and Cybernetics, IEEE Transactions on 24.3 (1994): 517-522.
[23]Hwang, Kao-Shing, Ming-Yi Ju, and Yu-Jen Chen. "Speed alteration strategy for multijoint robots in co-working environment." Industrial Electronics, IEEE Transactions on 50.2 (2003): 385-393.
[24]Luo, Ren C., et al. "Repulsive reaction vector generator for whole-arm collision avoidance of 7-DoF redundant robot manipulator." Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on. IEEE, 2014.
[25]Luo, Ren C., and Yi-Ting Chung. "Dynamic multi-obstacles avoidance of a robot manipulator based on repulsive vector summation for human-robot co-works." Advanced Intelligent Mechatronics (AIM), 2015 IEEE International Conference on. IEEE, 2015.
[26]Luo, Ren C., Tsung-Wei Lin, and Yun-Hsuan Tsai. "Analytical inverse kinematic solution for modularized 7-DoF redundant manipulators with offsets at shoulder and wrist." Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE, 2014.
[27]Shimizu, Masayuki, et al. "Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution." Robotics, IEEE Transactions on 24.5 (2008): 1131-1142.
[28]Chuang, Jen-Hui. "Potential-based modeling of three-dimensional workspace for obstacle avoidance." Robotics and Automation, IEEE Transactions on 14.5 (1998): 778-785.
[29]Hogan, Neville. "Impedance control: An approach to manipulation." American Control Conference, 1984. IEEE, 1984.
[30]N. Hogan, "Impedance Control: An Approach to Manipulation, Parts I~ III," Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control, vol. 107, no. 1, pp. 1-24, March 1985.
[31]A. Albu-Schaffer and G. Hirzinger, "Cartesian Impedance Control Techniques for Torque Controlled Light-Weight Robots," in Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, vol. 1, pp. 657-663, May 2002.
[32]A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger, "Cartesian Impedance Control of Redundant Robots: Recent Results with the DLR-Light-Weight-Arms," in Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, vol. 3, pp. 3704-3709, September 2003.
[33]A. Albu-Schaffer, C. Ott, and G. Hirzinger, "A Unified Passivity-Based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots," International Journal of Robotics Research, vol. 26, no. 1, pp. 23-39, January 2007.
[34]C. Ott, A. Albu-Schaffer, A. Kugi, and G. Hirzinger, "On the Passivity-Based Impedance Control of Flexible Joint Robots," IEEE Transactions on Robotics, vol. 24, no. 2, pp. 416-429, April 2008.
[35]L. Biagiotti, H. Liu, G. Hirzinger, and C. Melchiorri, "Cartesian Impedance Control for Dexterous Manipulation," in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, vol. 4, pp. 3270-3275, October 2003.
[36]H. Liu and G. Hirzinger, "Joint Torque Based Cartesian Impedance Control for the DLR Hand," in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, GA, USA, pp. 695-700, 1999.
[37]M. Matinfar and K. Hashtrudi-Zaad, "Optimization-Based Robot Impedance Controller Design," in Proceedings of the 43rd IEEE Conference on Decision and Control, Piscataway, NJ, USA, vol. 2, pp. 1246-51, December 2004.
[38]M. Matinfar and K. Hashtrudi-Zaad, "Optimization-Based Robot Compliance Control: Geometric and Linear Quadratic Approaches," International Journal of Robotics Research, vol. 24, no. 8, pp. 645-56, August 2005.
[39]C. Ott, R. Mukherjee, and Y. Nakamura, "Unified Impedance and Admittance Control," in Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, May 2010.
[40]A. Lopes and F. Almeida, "A Force-Impedance Controlled Industrial Robot Using an Active Robotic Auxiliary Device," Robotics and Computer-Integrated Manufacturing, vol. 24, no. 3, pp. 299-309, 2008.
[41]H. W. Mao, "Design of Human-Robot Handshaking Strategy with Variable Impedance Control," Department of Polymer Engineering, National Taiwan University of Science and Technology, 2009.
[42]A. C. Huang, "The Application of Robot Impedance Control for Manufacturing" Graduate Institude of Engineering, National Taiwan University of Science and Technology, 1989.
[43]N. Hogan, "Stable Execution of Contact Tasks Using Impedance Control," in Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, pp. 1047-54, April 1987.
[44]A. Hace, K. Jezernik, and S. Uran, "Robust Impedance Control," in Proceedings of the IEEE International Conference on Control Applocations. Part 1 (of 2), Trieste, Italy, vol. 1, pp. 583-587, September 1998.
[45]Z. Lu and A. A. Goldenberg, "Robust Impedance Control and Force Regulation. Theory and Experiments," International Journal of Robotics Research, vol. 14, no. 3, pp. 225-254, June 1995.
[46]W. Heng, K. H. Low, and M. Y. Wang, "Combined Impedance/Direct Control of Robot Manipulators," in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway, NJ, USA, pp. 3605-10, October 2006.
[47]S. Jung, T. C. Hsia, and R. G. Bonitz, "On Robust Impedance Force Control of Robot Manipulators," in Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, vol. 3, pp. 2057-2062, April 1997.
[48]Y. Xie, D. Sun, C. Liu, S. H. Cheng, and Y. H. Liu, "A Force Control Based Cell Injection Approach in a Bio-Robotics System," in Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3443-3448, May 2009.
[49]J. S. Lee, "Adaptive Impedance Control for Robot Contact Tasks," Department of Mechanical Engineering, National Chung Hsing University, 1994.
[50]Jung, Seul, Tien C. Hsia, and Robert G. Bonitz. "Force tracking impedance control of robot manipulators under unknown environment." IEEE Transactions on Control Systems Technology 12.3 (2004): 474-483.
[51]T.A. Lasky, and T.C. Hsia, "Force-Tracking Impedance Control of Robot Manipulators," Systems, Control, Robotics Technical Report No. UCD-EECS-SCR-91/3, University of Califomia, Davis, 1991.
[52]S. X. Chen, "Adaptive Impedance Control of Robot Manipulator" Department of Mechanical Engineering, National Taiwan University, 1990.
[53]H. Seraji and R. Colbaugh, "Force Tracking in Impedance Control" International Journal of Robotics Research, vol. 16, no. 1, pp. 97-117, February 1997.
[54]W. Khalil and E. Dombre, "Modeling, Identification & Control of Robots" London: Kogan Page Science, 2004.
[55]J. T. Wen and S. Murphy, "Stability Analysis of Position and Force Control for Robot Arms," IEEE Transactions on Automatic Control, vol. 36, no. 3, pp. 365-371, Marchs 1991.
[56]Ren C. Luo, Chun-Hao Liao and Mong-Hsun Kuo, “Non-Contact Collision Avoidance with Sensory Servo Control in Real Time for Industrial Automation”, accepted by 2017 IEEE Smart World Congress (SWC 2017), San Francisco, Bay Area, the United States, August 4-8, 2017 (EI)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top