跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林哲宇
研究生(外文):Jhe-yu Lin
論文名稱:使用氮化鎵開關元件以降低電源轉換器之共模電磁干擾
論文名稱(外文):Using GaN Switching Devices for Common Mode EMI Reduction in Power Converters
指導教授:陳德玉
口試日期:2017-07-13
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:65
中文關鍵詞:氮化鎵元件疊接結構共模電磁干擾
外文關鍵詞:GaNCascode StructureCommon mode EMI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一種基於疊接技術的氮化鎵元件在近幾年來中高頻(200 kHz to 500 kHz)的應用範圍受到廣泛的討論。基於它元件本身的結構,在元件內部對於底部金屬平面的接法有兩種不同的選擇,可以與汲極或是源極連接,與一般傳統的垂直式結構的Si based Power MOSFET只能連接汲極不同。
本論文提出使用氮化鎵如上所提的兩種接法,經由選用適當的氮化鎵封裝組合來降低電源轉換器中的共模雜訊。就結果而言,可以有效低降低電源轉換器的傳導電磁干擾,除了降低共模電磁干擾以及適當的封裝選擇,其他相關聯的理論說明也都會在本論文中提出。
一個240W LLC搭配一前級PFC的電源轉換器架構設計做為實驗電路來驗證本論文所提出的方法。從結果發現此方法可以很有效低降低傳導電磁干擾,而本論文所提出的方法,也可應用於其他的電源轉換器架構或是換流器。
The gallium nitride (GaN) cascode switch has received much attention recently for line-operated medium-high frequency (200 kHz to 500 kHz) applications. Because of its device structure, there are two package options available with regard to the tab internal connection; either the drain terminal or the source terminal is electrically connected to the metallic plate of the device package, unlike the conventional vertical power Si based MOSFET in which the drain terminal can be connected to the device metallic plate.
It is proposed in the dissertation that taking advantage of the unique feature of GaN devices packages mentioned above and using a proper combination of the GaN devices in a converter circuit converter common mode noise can be reduced. As a result, the converter conducted EMI can be reduced. The theory is explained and the rule for proper package selection are described in the dissertertation.
A 240-Watt LLC power converter with a front-end power-factor-correction (PFC) circuit was built for experimental verification. In the experiment, significant reduction in the conducted EMI was observed. The proposed strategy can be applied to other converter or inverter configurations. GaN devices provide an option, unavailable in power MOSFET devices to significantly reduce the converter conducted EMI.
Table of Contents
口試委員會審定書 2
Acknowledgments 4
摘要 i
Abstract ii
Table of Contents iii
List of Figures v
List of Tables vii
Chapter 1. Introduction 1
1.1 Research Background 1
1.2 Brief Review of Power Semiconductor Devices 2
1.2.1 Bipolar Technology 2
1.2.2 MOSFET Technology 2
1.2.3 Bipolar-MOSFET Combination Devices 3
1.2.4 Wide Band-gap Devices 3
1.2.5 GaN Material 3
1.3 Status of GaN devices 6
1.4 The Focus of the Dissertation 7
1.5 Dissertation Outlines 7
Chapter 2. Review of GaN HEMT and Cascode Switch 9
2.1 GaN HEMT 9
2.1.1 Device Structure of a GaN HEMT 9
2.1.2 Two Different Mode of GaN HEMT 11
2.2 Cascode Switch (CS) 14
2.3 Package Aspects of a CS 17
2.4 Summary 19
Chapter 3. Device Package Effects on the Conducted EMI Noise 20
3.1 Measurement of Conducted EMI Noise 20
3.2 Analysis of Conducted EMI Noise 22
3.3 Device Package Effects on the Measured EMI 24
3.4 Package Selection Strategy for Reducing Common Mode Noise 30
3.4.1 Noise Analysis for an LLC Converter with Power Factor Correction 30
3.4.2 Conducted CM Noise Current Path in the PFC circuit 31
3.4.3 Conducted CM Noise Path in the LLC Converter circuit 32
3.5 Summary 34
Chapter 4. Verifications of the Proposed Strategy 35
4.1 Experimental Breadboard 35
4.2 Experimental Results 39
4.3 Discussion of Results 43
4.4 Summary 46
Chapter 5. Conclusions and Suggestions for Further Research 47
5.1 Conclusions 47
5.2 Suggestions for Future Research 48
References 49
Appendix A. Design Process of PFC and Selected IC 53
Appendix B. Design Process of LLC and Selected IC 57
Appendix C. The Impedance Feature of SMD Bead Core 63

List of Figures
Fig 1.1 Limitation of on-resistance versus breakdown voltage [6] 5
Fig 1.2 Comparison products from Yaskawa [6] 7
Fig 2.1 A diagram illustrating a HEMT device structure [17] 10
Fig 2.2 Conventional structure of MOSFET 10
Fig 2.3 Turn-on conditions of D-mode GaN and MOSFET [17] 11
Fig 2.4 Turn-on condition of E-mode GaN 12
Fig 2.5 E-mode GaN HEMT structure [17] 13
Fig 2.6. A circuit diagram of the cascode switch configuration. 14
Fig 2.7. Waveforms of cacode switch on-off sequence 15
Fig 2.8. Cross section of standard and super-junction MOSFET [30] 16
Fig 2.9 S-tab package 18
Fig 2.10 D-tab package 18
Fig 3.1 Block diagram of EMI conduction test 20
Fig 3.2 Equivalent circuit of LISN 21
Fig 3.3 Equivalent circuit of noise frequency 22
Fig 3.4 A diagram illustrating conducted EMI current coupling mechanism 23
Fig 3.5 Two different circuit arrangements for the primary side of a flyback converter circuit (a) Case A (b) Case B 25
Fig 3.6 Traditional TO-220 package of MOSFET 26
Fig 3.7 Package structure of a GaN HEMT 27
Fig 3.8 Inside structure photo of a CS [6] 28
Fig 3.9 Connection diagram of a CS 28
Fig 3.10 Diagram of parasitic capacitance for D-tab 29
Fig 3.11 Photo of the finished package of the die shown in Fig 3.8 29
Fig 3.12 Diagram of the power circuit 31
Fig 3.13 The circuit diagram of a boost type PFC and the CM noise current path 32
Fig 3.14 the circuit diagram of an LLC converter 33
Fig 3.15 Operating waveforms of LLC 33
Fig 4.1 Full function block of the experimental circuit 36
Fig 4.2 Breadboard of the experimental circuit 36
Fig 4.3Experimental circuit diagram 37
Fig 4.4 Breadboard layout placement of Q1 38
Fig 4.5 Breadboard layout placement of QH and QL 39
Fig 4.6 Test environment 41
Fig 4.7 EMI measured result for Case I 42
Fig 4.8 EMI measured result for Case II 42
Fig 4.9 EMI measured result for Case III 43
Fig 4.10 Switching voltage VDS waveform of Q1; Blue for S-tab Grey for D-tab 44
Fig 4.11 Diagram of a three-phase inverter 45
Fig 4.12 Diagram of totem pole bridgeless PFC 46


List of Tables
Table 1.1 Material properties of GaN, SiC, Silicon 5
Table 1.2 Comparison among different device 5
Table 2.1 Comparison of 600V devices parameters of CS GaN HEMT and Cool-MOS 17
Table 4.1 The component values and operating conditions of the experimental circuit 37
Table 4.2 Three cases of package combination 41
References
[1]A. Lidow, “GaN as a Displacement Technology for Silicon in Power Management,” in Proc. IEEE ECCE, 2011, pp. 1-6
[2]B. J. Baliga, “Power semiconductor device figure of merit for high-frequency applications,” IEEE Electron Device Lett. vol. 10 no. 10 pp. 455-457 Oct. 1989.
[3]J. Millan P. Godignon X. Perpina A. Perez-Tomas J. Rebollo, “A survey of wide bandgap power semiconductor devices,” IEEE Trans. Power Electron. vol. 29 no. 5 pp. 2155-2163 May 2014.
[4]N. Kaminski, “State of the art and the future of wide band-gap devices,” in Proc. IEEE Power Electron. Appl. pp. 1-9 Sep. 2009.
[5]N. Kaminski, O. Hilt, “SiC and GaN devices – wide bandgap is not all the same,” IET Circuits, Devices & Systems, vol. 8, no. 3, 2014 , pp. 227 - 236
[6]GaN Revolution http://www.transphormusa.com/
[7]T. LaBella, J.S. Lai, “A Hybrid Resonant Converter Utilizing a Bidirectional GaN AC Switch for High-Efficiency PV Applications,” IEEE Trans. on Industry Applications, vol.50, no.5, pp.3468-3475, Sept. 2014
[8]A. Delias, A. Martin, P. Bouysse, J.M. Nebus, R. Quéré, “Low consumption and high frequency GaN-based gate driver circuit with integrated PWM,” IET Electronics Letters, Volume 51, Issue 18, pp. 1415 – 1416, Sept. 2015
[9]M. Rodriguez, Y. Zhang, D. Maksimovic, “High frequency synchronous Buck converter using GaN-on-SiC HEMTs,” in Proc. IEEE ECCE, Sept. 2013
[10]M. Rodriguez, Y. Zhang, D. Maksimovic, D., “High-Frequency PWM Buck Converters Using GaN-on-SiC HEMTs,” IEEE Trans. Power Electron. vol.29, pp.2462-2473 May 2014
[11]C.H. Won, K.W. Kim, D.S. Kim, H.S. Kang, K.S. Im, Y.W. Jo, D.K. Kim, R.H. Kim, J.H. Lee, “Normally-off vertical-type mesa-gate GaN MOSFET,” IET Electronics Letters, Volume 50, Issue 23, November 2014, p. 1749 – 1751
[12]J. Delprato, A. Delias, P. Medrel, D. Barataud, M. Campovecchio, G. Neveux, A. Martin, “Pulsed gate bias control of GaN HEMTs to improve pulse-to-pulse stability in radar applications,” IET Electronics Letters, Volume 51, Issue 13, June 2015, p. 1023 - 1025
[13]K. Shirabe, M. Swamy, J.K. Kang, M. Hisatsune, Y.F. Wu, D. Kebort, J. Honea, “Efficiency Comparison Between Si-IGBT-Based Drive and GaN-Based Drive,” IEEE Transactions on Industry Applications, vol.50, no.1, pp.566-572, 2014
[14]J. Delaine, P. Jeannin, D. Frey, K. Guepratte “High Frequency DC-DC Converter Using GaN Device,” in Proc. IEEE APEC 2012, pp. 1754- 1761.
[15]P.J. Garsed, R.A. McMahon, “optimizing the dynamic performance of an all-wide-bandgap cascade switch,” in Proc. IEEE IECON 2013, pp. 1112- 1117
[16]X. Huang, Q. Li, Z. Liu and F. C. Lee, “Analytical loss model of high voltage GaN HEMT in cascode configuration,” IEEE Trans. Power Electron. vol.29, pp.2208-2219 May 2014
[17]GaN Transistors for Efficient Power Conversion First Edition by A. Lidow, J. strydom, M. de Rooij, Y.P. Ma
[18]C. Y. Chang et al. , “Development of enhancement mode AlN/GaN high electron mobility transistors,” Appl. Phys. Lett. vol. 94 no. 26 pp. 263505 Jun. 2009.
[19]N. Ikeda Y. Niiyama H. Kambayashi Y. Sato T. Nomura S. Kato S. Yoshida, “GaN power transistors on Si substrates for switching applications,” in Proc. IEEE vol. 98 no. 7 pp. 1151-1161 Jul. 2010
[20]Z. Liu, X. Huang, F. C. Lee and Q. Li, “Package parasitic inductance extraction and simulation model development for the high-voltage cascode GaN HEMT,” IEEE Trans. Power Electron. vol.29, pp.1977-1985 April 2014
[21]X. Huang, Z. Liu, Q. Li, F.C. Lee, “Evaluation and Application of 600 V GaN HEMT in Cascode Structure,” IEEE Trans. Power Electron, vol. 29, no. 6, pp. 2453-2461, May. 2014.
[22]S. Young, W. Choi, “Switching loss estimation of high voltage power MOSFET in power factor correction pre-regulator,” in Proc. IEEE APEC 2011,pp.463 -467
[23]Y. Ren , M. Xu , J. Zhou and F. C. Lee, “Analytical loss model of power MOSFET,” IEEE Trans. Power Electron, vol. 21, no. 2, pp.310 -319 2006
[24]W. Saito , T. Domon , I. Omura , T. Nitta , Y. Kakiuchi , K. Tsuda and M.Yamaguchi, “Demonstration of resonant inverter circuit for electrodeless fluorescent lamps using high voltage GaN-HEMT,” in Proc. IEEE PESC, pp.3324 -3329 2008
[25]G. Sorrentino, M. Melito, A. Patti, G. Parrino, A. Raciti, “GaN HEMT devices: Experimental results on normally-on, normally-off and cascade configuration,” in Proc. IEEE IECON 2013, pp. 816- 821.
[26]B. Wang, N. Tipirneni, M. Riva, A. Monti, G. Simin, E. Santi, “An Efficient High-Frequency Drive Circuit for GaN Power HEMTs,” IEEE Transactions on Industry Applications, vol.45, no.2, pp.843-853, 2009
[27]EPC_2012 datasheet
[28]Transphorm TPH3006PD Spec
[29]W.M. Zhang, Z.X. Xu, Z.Y. Zhang, F. Wang, L.M. Tolbert, B.J. Blalock, “Evaluation of 600 V cascode GaN HEMT in device characterization and all-GaN-based LLC resonant converter,” in Proc. IEEE ECCE, pp.3571,3578, 15-19 Sept. 2013
[30]Power MOSFET Basics - Infineon Technologies
[31]T. Guo, D. Chen, F. C. Lee, “Separation of Common-Mode and Differential-Mode Conducted EMI Noise,” IEEE Trans. Power Electron, vol. 11, no. 3, pp.480-488, May 1996.
[32]F.Y. Shih ,D.Y. Chen, Y.P. Wu, and Y.T. Chen, “A Procedure for Designing EMI Filter for AC Line Applications,” IEEE Trans. Power Electron, vol. 11, no. 1, pp.170-181, Jan.1996.
[33]B.G. Kang, C.S. Park, S.K. Chung, “Integrated transformer using magnetic sheet for LLC resonant converter,” IET Electronics Letters, vol. 50, no. 10, May 2014, pp. 770 – 771
[34]B.R. Lin, B.R. Hou, “Analysis and implementation of a zero-voltage switching pulse-width modulation resonant converter,” IET Power Electronics, vol. 7, no. 1, 2014 , pp. 124 – 131
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top